2023年人教版七7年級下冊數學期末解答題壓軸題題附答案_第1頁
2023年人教版七7年級下冊數學期末解答題壓軸題題附答案_第2頁
2023年人教版七7年級下冊數學期末解答題壓軸題題附答案_第3頁
2023年人教版七7年級下冊數學期末解答題壓軸題題附答案_第4頁
2023年人教版七7年級下冊數學期末解答題壓軸題題附答案_第5頁
已閱讀5頁,還剩38頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年人教版七7年級下冊數學期末解答題壓軸題題附答案一、解答題1.動手試一試,如圖1,紙上有10個邊長為1的小正方形組成的圖形紙.我們可以按圖2的虛線將它剪開后,重新拼成一個大正方形.(1)基礎鞏固:拼成的大正方形的面積為______,邊長為______;(2)知識運用:如圖3所示,將圖2水平放置在數軸上,使得頂點B與數軸上的重合.以點B為圓心,邊為半徑畫圓弧,交數軸于點E,則點E表示的數是______;(3)變式拓展:①如圖4,給定的方格紙(每個小正方形邊長為1),你能從中剪出一個面積為13的正方形嗎?若能,請在圖中畫出示意圖;②請你利用①中圖形在數軸上用直尺和圓規(guī)表示面積為13的正方形邊長所表示的數.2.喜歡探究的亮亮同學拿出形狀分別是長方形和正方形的兩塊紙片,其中長方形紙片的長為,寬為,且兩塊紙片面積相等.(1)亮亮想知道正方形紙片的邊長,請你幫他求出正方形紙片的邊長;(結果保留根號)(2)在長方形紙片上截出兩個完整的正方形紙片,面積分別為和,亮亮認為兩個正方形紙片的面積之和小于長方形紙片的總面積,所以一定能截出符合要求的正方形紙片來,你同意亮亮的見解嗎?為什么?(參考數據:,)3.有一塊面積為100cm2的正方形紙片.(1)該正方形紙片的邊長為cm(直接寫出結果);(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?4.張華想用一塊面積為400cm2的正方形紙片,沿著邊的方向剪出一塊面積為300cm2的長方形紙片,使它的長寬之比為3:2.他不知能否裁得出來,正在發(fā)愁.李明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意李明的說法嗎?張華能用這塊紙片裁出符合要求的紙片嗎?5.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長方形紙片,使它的長是寬的2倍.她不知能否裁得出來,正在發(fā)愁.小明見了說:“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說法嗎?你認為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?二、解答題6.如圖1,已AB∥CD,∠C=∠A.(1)求證:AD∥BC;(2)如圖2,若點E是在平行線AB,CD內,AD右側的任意一點,探究∠BAE,∠CDE,∠E之間的數量關系,并證明.(3)如圖3,若∠C=90°,且點E在線段BC上,DF平分∠EDC,射線DF在∠EDC的內部,且交BC于點M,交AE延長線于點F,∠AED+∠AEC=180°,①直接寫出∠AED與∠FDC的數量關系:.②點P在射線DA上,且滿足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,補全圖形后,求∠EPD的度數7.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數;(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關系(用含α的代數式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關系.8.如圖,已知直線射線,.是射線上一動點,過點作交射線于點,連接.作,交直線于點,平分.(1)若點,,都在點的右側.①求的度數;②若,求的度數.(不能使用“三角形的內角和是”直接解題)(2)在點的運動過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數;若不存在.請說明理由.9.已知,點在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點,請利用(1)的結論說明:.(3)圖3中,的平分線與的平分線相交于點,請直接寫出與之間的數量關系.10.問題情境:(1)如圖1,,,.求度數.小穎同學的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數量關系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側運動時(點與點、、三點不重合),請你猜想、、之間的數量關系并證明.三、解答題11.如圖,以直角三角形的直角頂點為原點,以、所在直線為軸和軸建立平面直角坐標系,點,滿足.(1)點的坐標為______;點的坐標為______.(2)如圖1,已知坐標軸上有兩動點、同時出發(fā),點從點出發(fā)沿軸負方向以1個單位長度每秒的速度勻速移動,點從點出發(fā)以2個單位長度每秒的速度沿軸正方向移動,點到達點整個運動隨之結束.的中點的坐標是,設運動時間為.問:是否存在這樣的,使?若存在,請求出的值:若不存在,請說明理由.(3)如圖2,過作,作交于點,點是線段上一動點,連交于點,當點在線段上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值:若變化,請說明理由.12.為更好地理清平行線相關角的關系,小明爸爸為他準備了四根細直木條、、、,做成折線,如圖1,且在折點B、C、D處均可自由轉出.(1)如圖2,小明將折線調節(jié)成,,,判斷是否平行于,并說明理由;(2)如圖3,若,調整線段、使得求出此時的度數,要求畫出圖形,并寫出計算過程.(3)若,,,請直接寫出此時的度數.13.已知,將一副三角板中的兩塊直角三角板如圖1放置,,,,.(1)若三角板如圖1擺放時,則______,______.(2)現固定的位置不變,將沿方向平移至點E正好落在上,如圖2所示,與交于點G,作和的角平分線交于點H,求的度數;(3)現固定,將繞點A順時針旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出的度數.14.已知直線,M,N分別為直線,上的兩點且,P為直線上的一個動點.類似于平面鏡成像,點N關于鏡面所成的鏡像為點Q,此時.(1)當點P在N右側時:①若鏡像Q點剛好落在直線上(如圖1),判斷直線與直線的位置關系,并說明理由;②若鏡像Q點落在直線與之間(如圖2),直接寫出與之間的數量關系;(2)若鏡像,求的度數.15.如圖1,E點在BC上,∠A=∠D,AB∥CD.(1)直接寫出∠ACB和∠BED的數量關系;(2)如圖2,BG平分∠ABE,與∠CDE的鄰補角∠EDF的平分線交于H點.若∠E比∠H大60°,求∠E;(3)保持(2)中所求的∠E不變,如圖3,BM平分∠ABE的鄰補角∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數是否改變?若不變,請求值;若改變,請說理由.四、解答題16.如圖,直線,、是、上的兩點,直線與、分別交于點、,點是直線上的一個動點(不與點、重合),連接、.(1)當點與點、在一直線上時,,,則_____.(2)若點與點、不在一直線上,試探索、、之間的關系,并證明你的結論.17.直線MN與直線PQ垂直相交于O,點A在射線OP上運動,點B在射線OM上運動,A、B不與點O重合,如圖1,已知AC、BC分別是∠BAP和∠ABM角的平分線,(1)點A、B在運動的過程中,∠ACB的大小是否發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出∠ACB的大小.(2)如圖2,將△ABC沿直線AB折疊,若點C落在直線PQ上,則∠ABO=________,如圖3,將△ABC沿直線AB折疊,若點C落在直線MN上,則∠ABO=________(3)如圖4,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其反向延長線交于E、F,則∠EAF=;在△AEF中,如果有一個角是另一個角的倍,求∠ABO的度數.18.如圖1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求證:∠BED=90°;(2)如圖2,延長BE交CD于點H,點F為線段EH上一動點,∠EDF=α,∠ABF的角平分線與∠CDF的角平分線DG交于點G,試用含α的式子表示∠BGD的大??;(3)如圖3,延長BE交CD于點H,點F為線段EH上一動點,∠EBM的角平分線與∠FDN的角平分線交于點G,探究∠BGD與∠BFD之間的數量關系,請直接寫出結論:.19.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數.(4)若圖2中的周長,現將固定,將沿著方向平移至點與重合,平移后的得到,點的對應點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉,分鐘轉半圈,旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉的時間.20.已知ABCD,點E是平面內一點,∠CDE的角平分線與∠ABE的角平分線交于點F.(1)若點E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數量關系并證明你的結論;(2)若點E的位置如圖2所示,∠F與∠BED滿足的數量關系式是.(3)若點E的位置如圖3所示,∠CDE為銳角,且,設∠F=α,則α的取值范圍為.【參考答案】一、解答題1.(1)10,;(2);(3)見解析;(4)見解析【分析】(1)易得10個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術平方根即可為大正方形的邊長;(2)根據大正方形的邊長結合實解析:(1)10,;(2);(3)見解析;(4)見解析【分析】(1)易得10個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術平方根即可為大正方形的邊長;(2)根據大正方形的邊長結合實數與數軸的關系可得結果;(3)以2×3的長方形的對角線為邊長即可畫出圖形;(4)得到①中正方形的邊長,再利用實數與數軸的關系可畫出圖形.【詳解】解:(1)∵圖1中有10個小正方形,∴面積為10,邊長AD為;(2)∵BC=,點B表示的數為-1,∴BE=,∴點E表示的數為;(3)①如圖所示:②∵正方形面積為13,∴邊長為,如圖,點E表示面積為13的正方形邊長.【點睛】本題考查了圖形的剪拼,正方形的面積,算術平方根,實數與數軸,巧妙地根據網格的特點畫出正方形是解此題的關鍵.2.(1);(2)不同意,理由見解析【分析】(1)設正方形邊長為,根據兩塊紙片面積相等列出方程,再根據算術平方根的意義即可求出x的值;(2)根據兩個正方形紙片的面積計算出兩個正方形的邊長,計算兩個解析:(1);(2)不同意,理由見解析【分析】(1)設正方形邊長為,根據兩塊紙片面積相等列出方程,再根據算術平方根的意義即可求出x的值;(2)根據兩個正方形紙片的面積計算出兩個正方形的邊長,計算兩個正方形邊長的和,并與3比較即可解答.【詳解】解:(1)設正方形邊長為,則,由算術平方根的意義可知,所以正方形的邊長是.(2)不同意.因為:兩個小正方形的面積分別為和,則它們的邊長分別為和.,即兩個正方形邊長的和約為,所以,即兩個正方形邊長的和大于長方形的長,所以不能在長方形紙片上截出兩個完整的面積分別為和的正方形紙片.【點睛】本題考查了算術平方根的應用,解題的關鍵是讀懂題意并熟知算術平方根的概念.3.(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據算術平方根的定義直接得出;(2)直接利用算術平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據算解析:(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據算術平方根的定義直接得出;(2)直接利用算術平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據算術平方根定義可得,該正方形紙片的邊長為10cm;故答案為:10;(2)∵長方形紙片的長寬之比為4:3,∴設長方形紙片的長為4xcm,則寬為3xcm,則4x?3x=90,∴12x2=90,∴x2=,解得:x=或x=-(負值不符合題意,舍去),∴長方形紙片的長為2cm,∵5<<6,∴10<2,∴小麗不能用這塊紙片裁出符合要求的紙片.【點睛】本題考查了算術平方根.解題的關鍵是掌握算術平方根的定義:一個正數的正的平方根叫這個數的算術平方根;0的算術平方根為0.也考查了估算無理數的大?。?.不同意,理由見解析.【詳解】試題分析:設面積為300平方厘米的長方形的長寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長為20厘米,由于解析:不同意,理由見解析.【詳解】試題分析:設面積為300平方厘米的長方形的長寬分為3x厘米,2x厘米,則3x?2x=300,x2=50,解得x=,而面積為400平方厘米的正方形的邊長為20厘米,由于>20,所以用一塊面積為400平方厘米的正方形紙片,沿著邊的方向裁不出一塊面積為300平方厘米的長方形紙片,使它的長寬之比為3:2.試題解析:解:不同意李明的說法.設長方形紙片的長為3x(x>0)cm,則寬為2xcm,依題意得:3x?2x=300,6x2=300,x2=50,∵x>0,∴x==,∴長方形紙片的長為cm,∵50>49,∴>7,∴>21,即長方形紙片的長大于20cm,由正方形紙片的面積為400cm2,可知其邊長為20cm,∴長方形紙片的長大于正方形紙片的邊長.答:李明不能用這塊紙片裁出符合要求的長方形紙片.點睛:本題考查了算術平方根的定義:一個正數的正的平方根叫這個數的算術平方根;0的算術平方根為0.也考查了估算無理數的大小.5.不同意,理由見解析【分析】先求得正方形的邊長,然后設設長方形寬為,長為,然后依據矩形的面積為20列方程求得的值,從而得到矩形的邊長,從而可作出判斷.【詳解】解:不同意,因為正方形的面積為,解析:不同意,理由見解析【分析】先求得正方形的邊長,然后設設長方形寬為,長為,然后依據矩形的面積為20列方程求得的值,從而得到矩形的邊長,從而可作出判斷.【詳解】解:不同意,因為正方形的面積為,故邊長為設長方形寬為,則長為長方形面積∴,解得(負值舍去)長為即長方形的長大于正方形的邊長,所以不能裁出符合要求的長方形紙片【點睛】本題主要考查的是算術平方根的性質,熟練掌握算術平方根的性質是解題的關鍵.二、解答題6.(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據平行線的性質及判定可得結論;(2)過點E作EF∥AB,根解析:(1)見解析;(2)∠BAE+∠CDE=∠AED,證明見解析;(3)①∠AED-∠FDC=45°,理由見解析;②50°【分析】(1)根據平行線的性質及判定可得結論;(2)過點E作EF∥AB,根據平行線的性質得AB∥CD∥EF,然后由兩直線平行內錯角相等可得結論;(3)①根據∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可導出角的關系;②先根據∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根據∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度數.【詳解】解:(1)證明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如圖2,過點E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案為:∠AED-∠FDC=45°;②如圖3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=∠DEB=∠DEA,∴∠PEA=∠AED,∴∠DEP=∠PEA+∠AED=∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【點睛】本題主要考查平行線的判定和性質,熟練掌握平行線的判定和性質,角平分線的性質等知識點是解題的關鍵.7.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據平行線的性質得到∠AOE的度數,再根據直角、周角的定義即可求得∠BOE的度數;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據平行線的性質得到∠AOE的度數,再根據直角、周角的定義即可求得∠BOE的度數;(2)如圖②,過O點作OF∥CD,根據平行線的判定和性質可得∠OCD、∠BO′E′的數量關系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(2)∠OCD+∠BO′E′=360°-∠AOB,進而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點睛】此題考查了平行線的判定和性質,平移的性質,直角的定義,角平分線的定義,正確作出輔助線是解決問題的關鍵.8.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據平行線的性質以及角平分線的定義,即可得到∠PCG的度數;②依據平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據平行線的性質以及角平分線的定義,即可得到∠PCG的度數;②依據平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當點G、F在點E的右側時,②當點G、F在點E的左側時,依據等量關系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設∠EGC=3x°,∠EFC=2x°,①當點G、F在點E的右側時,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當點G、F在點E的左側時,反向延長CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點睛】本題主要考查了平行線的性質,掌握兩直線平行,同旁內角互補;兩直線平行,內錯角相等是解題的關鍵.9.(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據AB∥CD,EG∥AB,所以CD∥EG,解析:(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據∠ABE的平分線與∠CDE的平分線相交于點F,結合(1)的結論即可說明:∠BED=2∠BFD;(3)圖3中,根據∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結合(1)的結論即可說明∠BED與∠BFD之間的數量關系.【詳解】解:(1)如圖1中,過點E作EG∥AB,則∠BEG=∠ABE,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點睛】本題考查了平行線的性質,解決本題的關鍵是掌握平行線的性質.10.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構造同旁內角,利用平行線性質,可得∠APC=解析:(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構造同旁內角,利用平行線性質,可得∠APC=113°;(2)過過作交于,,推出,根據平行線的性質得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據平行線的性質即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質的應用,主要考查學生的推理能力,解決問題的關鍵是作輔助線構造內錯角以及同旁內角.三、解答題11.(1),;(2)1;(3)不變,值為2【分析】(1)根據絕對值和算術平方根的非負性,求得a,b的值,再利用中點坐標公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不變,值為2【分析】(1)根據絕對值和算術平方根的非負性,求得a,b的值,再利用中點坐標公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據S△ODP=S△ODQ,列出關于t的方程,求得t的值即可;(3)過H點作AC的平行線,交x軸于P,先判定OG∥AC,再根據角的和差關系以及平行線的性質,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入進行計算即可.【詳解】解:(1)∵+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0).(2)存在,理由:如圖1中,D(1,2),由條件可知:P點從C點運動到O點時間為2秒,Q點從O點運動到A點時間為2秒,∴0<t≤2時,點Q在線段AO上,即CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=?OP?yD=(2-t)×2=2-t,S△DOQ=?OQ?xD=×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1.(3)結論:的值不變,其值為2.理由如下:如圖2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如圖,過H點作AC的平行線,交x軸于P,則∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=2.【點睛】本題主要考查三角形綜合題、非負數的性質、三角形的面積、平行線的性質等知識,解題的關鍵是學會添加常用輔助線,學會用轉化的思想思考問題.12.(1)平行,理由見解析;(2)35°或145°,畫圖、過程見解析;(3)50°或130°或60°或120°【分析】(1)過點C作CF∥AB,根據∠B=50°,∠C=85°,∠D=35°,即可得C解析:(1)平行,理由見解析;(2)35°或145°,畫圖、過程見解析;(3)50°或130°或60°或120°【分析】(1)過點C作CF∥AB,根據∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,進而可以判斷AB平行于ED;(2)根據題意作AB∥CD,即可∠B=∠C=35°;(3)分別畫圖,根據平行線的性質計算出∠B的度數.【詳解】解:(1)AB平行于ED,理由如下:如圖2,過點C作CF∥AB,∴∠BCF=∠B=50°,∵∠BCD=85°,∴∠FCD=85°-50°=35°,∵∠D=35°,∴∠FCD=∠D,∴CF∥ED,∵CF∥AB,∴AB∥ED;(2)如圖,即為所求作的圖形.∵AB∥CD,∴∠ABC=∠C=35°,∴∠B的度數為:35°;∵A′B∥CD,∴∠ABC+∠C=180°,∴∠B的度數為:145°;∴∠B的度數為:35°或145°;(3)如圖2,過點C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∴∠B=∠BCF=50°.答:∠B的度數為50°.如圖5,過C作CF∥AB,則AB∥CF∥CD,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=130°;如圖6,∵∠C=85°,∠D=35°,∴∠CFD=180°-85°-35°=60°,∵AB∥DE,∴∠B=∠CFD=60°,如圖7,同理得:∠B=35°+85°=120°,綜上所述,∠B的度數為50°或130°或60°或120°.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是區(qū)分平行線的判定與性質,并熟練運用.13.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據平行線的性質和三角板的角的度數解答即可;(2)根據平行線的性質和角平分線的定義解答即可;(3)分當B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根據平行線的性質和三角板的角的度數解答即可;(2)根據平行線的性質和角平分線的定義解答即可;(3)分當BC∥DE時,當BC∥EF時,當BC∥DF時,三種情況進行解答即可.【詳解】解:(1)作EI∥PQ,如圖,∵PQ∥MN,則PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α=DEA-∠BAC=60°-45°=15°,∵E、C、A三點共線,∴∠β=180°-∠DFE=180°-30°=150°;故答案為:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分別平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)當BC∥DE時,如圖1,∵∠D=∠C=90,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;當BC∥EF時,如圖2,此時∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;當BC∥DF時,如圖3,此時,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.綜上所述,∠BAM的度數為30°或90°或120°.【點睛】本題考查了角平分線的定義,平行線性質和判定:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想與方程思想的應用,理清各角度之間的關系是解題的關鍵,也是本題的難點.14.(1)①,證明見解析,②,(2)或.【分析】(1)①根據和鏡像證出,即可判斷直線與直線的位置關系,②過點Q作QF∥CD,根據平行線的性質證即可;(2)過點Q作QF∥CD,根據點P的位置不同,解析:(1)①,證明見解析,②,(2)或.【分析】(1)①根據和鏡像證出,即可判斷直線與直線的位置關系,②過點Q作QF∥CD,根據平行線的性質證即可;(2)過點Q作QF∥CD,根據點P的位置不同,分類討論,依據平行線的性質求解即可.【詳解】(1)①,證明:∵,∴,∵,∴,∴;②過點Q作QF∥CD,∵,∴,∴,,∴,∵,∴;(2)如圖,當點P在N右側時,過點Q作QF∥CD,同(1)得,,∴,,∵,∴,∴,∵,∴,∴,如圖,當點P在N左側時,過點Q作QF∥CD,同(1)得,,同理可得,,∵,∴,∴,∵,∴,∴;綜上,的度數為或.【點睛】本題考查了平行線的性質與判定,解題關鍵是恰當的作輔助線,熟練利用平行線的性質推導角之間的關系.15.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長DE交AB于點F,根據ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據平行線的性質得∠A解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長DE交AB于點F,根據ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據平行線的性質得∠ACB+∠CEF=180°,由對頂角相等可得結論;(2)如圖2,作EMCD,HNCD,根據ABCD,可得ABEMHNCD,根據平行線的性質得角之間的關系,再根據∠DEB比∠DHB大60°,列出等式即可求∠DEB的度數;(3)如圖3,過點E作ESCD,設直線DF和直線BP相交于點G,根據平行線的性質和角平分線定義可求∠PBM的度數.【詳解】解:(1)如圖1,延長交于點,,,,,,,,故答案為:;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設,,比大,,,解得.的度數為;(3)的度數不變,理由如下:如圖3,過點作,設直線和直線相交于點,平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點睛】本題考查了平行線的性質,解決本題的關鍵是掌握平行線的性質.四、解答題16.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見詳解.【分析】(1)根據題意,當點與點、在一直線上時,作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計算∠PFD即可;(2)根據點P是動點,分三種情況討論:①當點P在AB與CD之間時;②當點P在AB上方時;③當點P在CD下方時,分別求出∠AEP、∠EPF、∠CFP之間的關系即可.【詳解】(1)當點與點、在一直線上時,作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿足關系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據點P是動點,分三種情況討論:①當點P在AB與CD之間時,過點P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當點P在AB上方時,如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當點P在CD下方時,∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿足的關系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點睛】本題考查了平行線的性質,外角的性質,掌握平行線的性質是解題的關鍵,注意分情況討論問題.17.(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據三角形的外角的性質得到∠解析:(1)∠AEB的大小不會發(fā)生變化,∠ACB=45°;(2)30°,60°;(3)60°或72°.【分析】(1)由直線MN與直線PQ垂直相交于O,得到∠AOB=90°,根據三角形的外角的性質得到∠PAB+∠ABM=270°,根據角平分線的定義得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到結論;(2)由于將△ABC沿直線AB折疊,若點C落在直線PQ上,得到∠CAB=∠BAQ,由角平分線的定義得到∠PAC=∠CAB,即可得到結論;根據將△ABC沿直線AB折疊,若點C落在直線MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到結論;(3)由∠BAO與∠BOQ的角平分線相交于E可得出∠E與∠ABO的關系,由AE、AF分別是∠BAO和∠OAG的角平分線可知∠EAF=90°,在△AEF中,由一個角是另一個角的倍分情況進行分類討論即可.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠ABM=270°,∵AC、BC分別是∠BAP和∠ABM角的平分線,∴∠BAC=∠PAB,∠ABC=∠ABM,∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,∴∠ACB=45°;(2)∵將△ABC沿直線AB折疊,若點C落在直線PQ上,∴∠CAB=∠BAQ,∵AC平分∠PAB,∴∠PAC=∠CAB,∴∠PAC=∠CAB=∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∵將△ABC沿直線AB折疊,若點C落在直線MN上,∴∠ABC=∠ABN,∵BC平分∠ABM,∴∠ABC=∠MBC,∴∠MBC=∠ABC=∠ABN,∴∠ABO=60°,故答案為:30°,60°;(3)∵AE、AF分別是∠BAO與∠GAO的平分線,∴∠EAO=∠BAO,∠FAO=∠GAO,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分別是∠BAO和∠OAG的角平分線,∴∠EAF=∠EAO+∠FAO=(∠BAO+∠GAO)=90°.在△AEF中,∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,∵有一個角是另一個角的倍,故有:①∠EAF=∠F,∠E=30°,∠ABO=60°;②∠F=∠E,∠E=36°,∠ABO=72°;③∠EAF=∠E,∠E=60°,∠ABO=120°(舍去);④∠E=∠F,∠E=54°,∠ABO=108°(舍去);∴∠ABO為60°或72°.【點睛】本題主要考查的是角平分線的性質以及三角形內角和定理的應用.解決這個問題的關鍵就是要能根據角平分線的性質將外角的度數與三角形的內角聯系起來,然后再根據內角和定理進行求解.另外需要分類討論的時候一定要注意分類討論的思想.18.(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據角平分線的性質求出∠EBD+∠EDB=(∠ABD+∠BDC),根據平行線的性質∠ABD+∠BDC=180°解析:(1)見解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根據角平分線的性質求出∠EBD+∠EDB=(∠ABD+∠BDC),根據平行線的性質∠ABD+∠BDC=180°,從而根據∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)過點G作GP∥AB,根據AB∥CD,得到GP∥AB∥CD,從而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根據∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分線的定義求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)過點F、G分別作FM∥AB、GM∥AB,從而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根據BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.【詳解】解:(1)證明:∵BE平分∠ABD,∴∠EBD=∠ABD,∵DE平分∠BDC,∴∠EDB=∠BDC,∴∠EBD+∠EDB=(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如圖2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,過點G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;(3)如圖,過點F、G分別作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),=180°+(∠3+∠5),=180°+∠BFD,整理得:2∠BGD+∠BFD=360°.【點睛】本題主要考查了平行線的性質與判定,角平分線的性質和三角形內角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.19.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性質即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質和角平分線定義即可得出答案;(4)根據平移性質可得D′A=DF,DD′=EE′=AF=5cm,再結合DE+EF+DF=35cm,可得出答案;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論