吉林省吉林市朝鮮族四校2025屆數(shù)學(xué)高二上期末考試模擬試題含解析_第1頁(yè)
吉林省吉林市朝鮮族四校2025屆數(shù)學(xué)高二上期末考試模擬試題含解析_第2頁(yè)
吉林省吉林市朝鮮族四校2025屆數(shù)學(xué)高二上期末考試模擬試題含解析_第3頁(yè)
吉林省吉林市朝鮮族四校2025屆數(shù)學(xué)高二上期末考試模擬試題含解析_第4頁(yè)
吉林省吉林市朝鮮族四校2025屆數(shù)學(xué)高二上期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

吉林省吉林市朝鮮族四校2025屆數(shù)學(xué)高二上期末考試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)拋物線C:的準(zhǔn)線上任意一點(diǎn)作拋物線的切線,切點(diǎn)為,若在軸上存在定點(diǎn),使得恒成立,則點(diǎn)的坐標(biāo)為()A. B.C. D.2.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%3.橢圓的焦點(diǎn)坐標(biāo)為()A., B.,C., D.,4.已知數(shù)列是等比數(shù)列,且,則的值為()A.3 B.6C.9 D.365.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.6.已知函數(shù)的導(dǎo)數(shù)為,且,則()A. B.C.1 D.7.某班新學(xué)期開(kāi)學(xué)統(tǒng)計(jì)新冠疫苗接種情況,已知該班有學(xué)生45人,其中未完成疫苗接種的有5人,則該班同學(xué)的疫苗接種完成率為()A. B.C. D.8.設(shè)、是橢圓:的左、右焦點(diǎn),為直線上一點(diǎn),是底角為的等腰三角形,則的離心率為A. B.C. D.9.圓:與圓:的位置關(guān)系是()A.內(nèi)切 B.外切C.相交 D.相離10.已知雙曲線:的左、右焦點(diǎn)分別為,,過(guò)點(diǎn)且斜率為的直線與雙曲線在第二象限的交點(diǎn)為,若,則雙曲線的離心率是()A. B.C. D.11.命題“對(duì)任何實(shí)數(shù),都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得12.在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示,則該幾何體的體積為_(kāi)_____.14.從1,3,5,7中任取2個(gè)數(shù)字,從0,2,4,6,8中任取2個(gè)數(shù)字,組成沒(méi)有重復(fù)數(shù)字的四位數(shù),這樣的四位數(shù)一共有___________個(gè).(用數(shù)字作答)15.已知函數(shù),則函數(shù)在上的最大值為_(kāi)______16.已知雙曲線與橢圓有公共的左、右焦點(diǎn)分別為,,以線段為直徑的圓與雙曲線C及其漸近線在第一象限內(nèi)分別交于M,N兩點(diǎn),且線段的中點(diǎn)在另一條漸近線上,則的面積為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(diǎn)(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值18.(12分)已知雙曲線的兩個(gè)焦點(diǎn)為的曲線C上.(1)求雙曲線C的方程;(2)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程19.(12分)在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離.(1)求動(dòng)點(diǎn)的軌跡方程;(2)記動(dòng)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),在軸上是否存在一點(diǎn),使若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.20.(12分)在平面直角坐標(biāo)系內(nèi),橢圓E:過(guò)點(diǎn),離心率為(1)求E的方程;(2)設(shè)直線(k∈R)與橢圓E交于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使得對(duì)任意實(shí)數(shù)k,直線AM,BM的斜率乘積為定值?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由21.(12分)某廠接受了一項(xiàng)加工業(yè)務(wù),加工出來(lái)的產(chǎn)品(單位:件)按標(biāo)準(zhǔn)分為A,B,C,D四個(gè)等級(jí).加工業(yè)務(wù)約定:對(duì)于A級(jí)品、B級(jí)品、C級(jí)品,廠家每件分別收取加工費(fèi)90元,50元,20元;對(duì)于D級(jí)品,廠家每件要賠償原料損失費(fèi)50元.該廠有甲、乙兩個(gè)分廠可承接加工業(yè)務(wù).甲分廠加工成本費(fèi)為25元/件,乙分廠加工成本費(fèi)為20元/件.廠家為決定由哪個(gè)分廠承接加工業(yè)務(wù),在兩個(gè)分廠各試加工了100件這種產(chǎn)品,并統(tǒng)計(jì)了這些產(chǎn)品的等級(jí),整理如下:甲分廠產(chǎn)品等級(jí)的頻數(shù)分布表等級(jí)ABCD頻數(shù)40202020乙分廠產(chǎn)品等級(jí)的頻數(shù)分布表等級(jí)ABCD頻數(shù)28173421(1)分別估計(jì)甲、乙兩分廠加工出來(lái)的一件產(chǎn)品為A級(jí)品的概率;(2)分別求甲、乙兩分廠加工出來(lái)的100件產(chǎn)品的平均利潤(rùn),以平均利潤(rùn)為依據(jù),廠家應(yīng)選哪個(gè)分廠承接加工業(yè)務(wù)?22.(10分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)切點(diǎn),點(diǎn),聯(lián)立直線的方程和拋物線C的準(zhǔn)線方程可得,將問(wèn)題轉(zhuǎn)化為對(duì)任意點(diǎn)恒成立,可得,解出,從而求出答案【詳解】設(shè)切點(diǎn),點(diǎn)由題意,拋物線C的準(zhǔn)線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對(duì)任意點(diǎn)恒成立,也就是對(duì)任意點(diǎn)恒成立因?yàn)?,,則,即對(duì)任意實(shí)數(shù)恒成立,所以,即,所以,故選:D【點(diǎn)睛】一般表示拋物線的切線方程時(shí)可將拋物線方程轉(zhuǎn)化為函數(shù)解析式,可利用導(dǎo)數(shù)的幾何意義求解切線斜率,再代入計(jì)算.2、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.3、A【解析】由題方程化為橢圓的標(biāo)準(zhǔn)方程求出c,則橢圓的焦點(diǎn)坐標(biāo)可求【詳解】由題得方程可化為,所以所以焦點(diǎn)為故選:A.4、C【解析】應(yīng)用等比中項(xiàng)的性質(zhì)有,結(jié)合已知求值即可.【詳解】由等比數(shù)列的性質(zhì)知:,,,所以,又,所以.故選:C5、A【解析】利用基本不等式可得,進(jìn)而可得,即求.【詳解】∵,∴,當(dāng)且僅當(dāng),即時(shí)取等號(hào),∴,,∴.故選:A.6、B【解析】直接求導(dǎo),令求出,再將帶入原函數(shù)即可求解.【詳解】由得,當(dāng)時(shí),,解得,所以,.故選:B7、D【解析】利用古典概型的概率求解.【詳解】該班同學(xué)的疫苗接種完成率為故選:D8、C【解析】如下圖所示,是底角為的等腰三角形,則有所以,所以又因?yàn)?,所以,,所以所以答案選C.考點(diǎn):橢圓的簡(jiǎn)單幾何性質(zhì).9、A【解析】先計(jì)算兩圓心之間的距離,判斷距離和半徑和、半徑差之間的關(guān)系即可.【詳解】圓圓心,半徑,圓圓心,半徑,兩圓心之間的距離,故兩圓內(nèi)切.故選:A.10、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進(jìn)而作,得出,由此求出結(jié)果【詳解】因?yàn)?,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B11、B【解析】可將原命題變成全稱(chēng)命題形式,而全稱(chēng)命題的否定為特稱(chēng)命題,即可選出答案.【詳解】命題“對(duì)任何實(shí)數(shù),都有”,可寫(xiě)成:,使得,此命題為全稱(chēng)命題,故其否定形式為:,使得.故選:B.12、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)三視圖還原幾何體,由此計(jì)算出幾何體的體積.【詳解】根據(jù)三視圖可知,該幾何體為如圖所示三棱錐,所以該幾何體的體積為.故答案為:14、1296【解析】根據(jù)取出的數(shù)字是否含有零,分類(lèi)討論,若不含零,則有四位數(shù)個(gè),若含有零,則有四位數(shù)個(gè),再根據(jù)分類(lèi)加法計(jì)數(shù)原理即可求出【詳解】若取出的數(shù)字中不含零,則有四位數(shù)個(gè);若取出的數(shù)字中含零,則有四位數(shù)個(gè);所以,這樣的四位數(shù)有個(gè)故答案為:129615、【解析】利用導(dǎo)數(shù)單調(diào)性求出的單調(diào)性,比較極小值與兩端點(diǎn),的大小求出在上的最大值.【詳解】因?yàn)?,則,令,即時(shí),函數(shù)單調(diào)遞增.令,即時(shí),函數(shù)單調(diào)遞減.所以的單調(diào)遞減區(qū)間為,的單調(diào)遞增區(qū)間為,所以在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)的極小值也是函數(shù)的最小值.,兩端點(diǎn)為,,即最大值為.故答案為:.16、【解析】求出橢圓焦點(diǎn)坐標(biāo),即雙曲線焦點(diǎn)坐標(biāo),即雙曲線的半焦距,再求出點(diǎn)坐標(biāo),利用中點(diǎn)在漸近線上得出的關(guān)系式,從而求得,然后可計(jì)算面積【詳解】由題意橢圓中,即,以線段為直徑的圓的方程為,由,解得(取第一象限交點(diǎn)坐標(biāo)),,雙曲線的不在第一象限的漸近線方程為,,的中點(diǎn)坐標(biāo)為,它在漸近線上,所以,化簡(jiǎn)得,又,所以,雙曲線方程為,則得,所以故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】(1)在平面中構(gòu)造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,分別求得兩個(gè)平面的法向量,利用向量法即可求得兩個(gè)平面夾角的余弦值.【小問(wèn)1詳解】取中點(diǎn)為,連接,如下所示:因?yàn)闉檎叫?,為中點(diǎn),故可得//;在△中,因?yàn)榉謩e為的中點(diǎn),故可得//;故可得//,則四邊形為平行四邊形,即//,又面面,故//面.【小問(wèn)2詳解】因?yàn)槊婷?,故可得,又底面為正方形,故可得,則兩兩垂直;故以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系如下所示:故可得,設(shè)平面的法向量為,又則,即,不妨取,則,則,取面的法向量為,故.設(shè)平面的夾角為,故可得,即平面MND與平面PAD的夾角的余弦值為.18、(1)雙曲線方程為(2)滿足條件的直線l有兩條,其方程分別為y=和【解析】(1)由雙曲線焦點(diǎn)可得值,進(jìn)而可得到的關(guān)系式,將點(diǎn)P代入雙曲線可得到的關(guān)系式,解方程組可求得值,從而確定雙曲線方程;(2)求直線方程采用待定系數(shù)法,首先設(shè)出方程的點(diǎn)斜式,與雙曲線聯(lián)立,求得相交的弦長(zhǎng)和O到直線的距離,代入面積公式可得到直線的斜率,求得直線方程試題解析:(1)由已知及點(diǎn)在雙曲線上得解得;所以,雙曲線的方程為(2)由題意直線的斜率存在,故設(shè)直線的方程為由得設(shè)直線與雙曲線交于、,則、是上方程的兩不等實(shí)根,且即且①這時(shí),又即所以即又適合①式所以,直線的方程為與19、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設(shè)直線的方程為,利用韋達(dá)定理法結(jié)合條件可得,即得.【小問(wèn)1詳解】因?yàn)閯?dòng)點(diǎn)到點(diǎn)的距離等于點(diǎn)到直線的距離,所以動(dòng)點(diǎn)到點(diǎn)的距離和它到直線的距離相等,所以點(diǎn)的軌跡是以為焦點(diǎn),以直線為準(zhǔn)線的拋物線,設(shè)拋物線方程為,由,得,所以動(dòng)點(diǎn)的軌跡方程為.【小問(wèn)2詳解】由題意可知,直線的斜率不為0,故設(shè)直線的方程為,.聯(lián)立,得,恒成立,由韋達(dá)定理,得,,假設(shè)存在一點(diǎn),滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點(diǎn),滿足,點(diǎn)的坐標(biāo)為.20、(1)(2)存在,或者【解析】(1)由離心率和橢圓經(jīng)過(guò)的點(diǎn)列出方程組,求出,得到橢圓方程;(2)假設(shè)存在,設(shè)出直線,聯(lián)立橢圓,利用韋達(dá)定理得到兩根之和,兩根之積,結(jié)合斜率乘積為定值得到關(guān)于的方程,求出答案.【小問(wèn)1詳解】由題可得,,①由,得,即,則,②將②代入①,解得,,故E的方程為【小問(wèn)2詳解】設(shè)存在點(diǎn)滿足條件記,由消去y,得.顯然,判別式>0,所以,,于是===上式為定值,當(dāng)且僅當(dāng),解得或此時(shí),或所以,存在定點(diǎn)或者滿足條件21、(1)甲分廠加工出來(lái)的級(jí)品的概率為,乙分廠加工出來(lái)的級(jí)品的概率為;(2)選甲分廠,理由見(jiàn)解析.【解析】(1)根據(jù)兩個(gè)頻數(shù)分布表即可求出;(2)根據(jù)題意分別求出甲乙兩廠加工件產(chǎn)品的總利潤(rùn),即可求出平均利潤(rùn),由此作出選擇【詳解】(1)由表可知,甲廠加工出來(lái)的一件產(chǎn)品為級(jí)品的概率為,乙廠加工出來(lái)的一件產(chǎn)品為級(jí)品的概率為;(2)甲分廠加工件產(chǎn)品的總利潤(rùn)為元,所以甲分廠加工件產(chǎn)品的平均利潤(rùn)為元每件;乙分廠加工件產(chǎn)品的總利潤(rùn)為元,所以乙分廠加工件產(chǎn)品的平均利潤(rùn)為元每件故廠家選擇甲分廠承接加工任務(wù)【點(diǎn)睛】本題主要考查古典概型的概率公式的應(yīng)用,以及平均數(shù)的求法,并根據(jù)平均值作出決策,屬于基礎(chǔ)題22、(1)證明見(jiàn)解析(2)【解析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論