版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆福建省泉州市永春縣第一中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若,是第二象限角,則=()A. B.5C. D.102.已知點(diǎn)到直線的距離為1,則m的值為()A.或 B.或15C.5或 D.5或153.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點(diǎn),以PQR為底面作一個直三棱柱,使其另一個底面的三個頂點(diǎn)也都在正方體的表面上,則這個直三棱柱的體積為()A. B.C. D.4.?dāng)?shù)列,,,,…,的通項公式可能是()A. B.C. D.5.公比為的等比數(shù)列,其前項和為,前項積為,滿足,.則下列結(jié)論正確的是()A.的最大值為B.C.最大值為D.6.已知橢圓的左、右焦點(diǎn)分別為,過的直線與橢圓C相交P,Q兩點(diǎn),若,且,則橢圓C的離心率為()A. B.C. D.7.如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為()A.B.C.D.8.等差數(shù)列前項和,已知,,則的值是().A. B.C. D.9.某中學(xué)初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校男教師的人數(shù)為()A.167 B.137C.123 D.11310.下列雙曲線中,以為一個焦點(diǎn),以為一個頂點(diǎn)的雙曲線方程是()A. B.C. D.11.若,,且,則()A. B.C. D.12.下列函數(shù)中,以為最小正周期,且在上單調(diào)遞減的為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),向量,,,且,,則___________.14.已知正數(shù)、滿足,則的最大值為__________15.設(shè)實數(shù)、滿足約束條件,則的最小值為___________.16.已知等差數(shù)列的前項和為,若,,則數(shù)列的前2021項和為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的方程為:.(1)求的值,使圓的周長最小;(2)過作直線,使與滿足(1)中條件的圓相切,求的方程,并求切線段的長.18.(12分)已知命題實數(shù)滿足不等式,命題實數(shù)滿足不等式.(1)當(dāng)時,命題,均為真命題,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.19.(12分)已知橢圓的離心率為,右焦點(diǎn)為F,點(diǎn)A(a,0),且|AF|=1(1)求橢圓C的方程;(2)過點(diǎn)F的直線l(不與x軸重合)交橢圓C于點(diǎn)M,N,直線MA,NA分別與直線x=4交于點(diǎn)P,Q,求∠PFQ的大小20.(12分)在平面直角坐標(biāo)系中,圓C:,直線l:(1)若直線l與圓C相切于點(diǎn)N,求切點(diǎn)N的坐標(biāo);(2)若,直線l上有且僅有一點(diǎn)A滿足:過點(diǎn)A作圓C的兩條切線AP、AQ,切點(diǎn)分別為P,Q,且使得四邊形APCQ為正方形,求m的值21.(12分)如圖,C是以為直徑的圓上異于的點(diǎn),平面平面分別是的中點(diǎn).(1)證明:平面;(2)若直線與平面所成角的正切值為2,求銳二面角的余弦值.22.(10分)已知橢圓.離心率為,點(diǎn)與橢圓的左、右頂點(diǎn)可以構(gòu)成等腰直角三角形(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn)直線的斜率之積等于,試探求的面積是否為定值,并說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】先由誘導(dǎo)公式及同角函數(shù)關(guān)系得到,再根據(jù)誘導(dǎo)公式化簡,最后由二倍角公式化簡求值即可.【詳解】∵,∴,∵是第二象限角,∴,∴故選:D2、D【解析】利用點(diǎn)到直線距離公式即可得出.【詳解】解:點(diǎn)到直線的距離為1,解得:m=15或5故選:D.3、C【解析】分別取的中點(diǎn),連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點(diǎn),連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因為正方體的棱長為1,所以,所以直三棱柱的體積為,故選:C4、D【解析】利用數(shù)列前幾項排除A、B、C,即可得解;【詳解】解:由,排除A,C,由,排除B,分母為奇數(shù)列,分子為,故數(shù)列的通項公式可以為,故選:D5、A【解析】根據(jù)已知條件,判斷出,即可判斷選項D,再根據(jù)等比數(shù)列的性質(zhì),判斷,,由此判斷出選項A,B,C.【詳解】根據(jù)題意,等比數(shù)列滿足條件,,,若,則,則,,則,這與已知條件矛盾,所以不符合題意,故選項D錯誤;因為,,,所以,,,則,,數(shù)列前2021項都大于1,從第2022項開始都小于1,因此是數(shù)列中的最大值,故選項A正確由等比數(shù)列的性質(zhì),,故選項B不正確;而,由以上分析可知其無最大值,故C錯誤;故選:A6、B【解析】設(shè),由橢圓的定義及,結(jié)合勾股定理求參數(shù)m,進(jìn)而由勾股定理構(gòu)造橢圓參數(shù)的齊次方程求離心率.【詳解】設(shè),橢圓的焦距為,則,由,有,解得,所以,故得:故選:B.7、D【解析】由題設(shè),“需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切)“可得出此兩點(diǎn)處的切線正是兩條直道所在直線,由此規(guī)律驗證四個選項即可得出答案【詳解】由函數(shù)圖象知,此三次函數(shù)在上處與直線相切,在點(diǎn)處與相切,下研究四個選項中函數(shù)在兩點(diǎn)處的切線A:,將0代入,此時導(dǎo)數(shù)為,與點(diǎn)處切線斜率為矛盾,故A錯誤B:,將0代入,此時導(dǎo)數(shù)為,不為,故B錯誤;C:,將2代入,此時導(dǎo)數(shù)為,與點(diǎn)處切線斜率為3矛盾,故C錯誤;D:,將0,2代入,解得此時切線的斜率分別是,3,符合題意,故D正確;故選:D.8、C【解析】由題意,設(shè)等差數(shù)列的公差為,則,故,故,故選9、C【解析】根據(jù)圖形分別求出初中部和高中部男教師的人數(shù),最后相加即可.【詳解】初中部男教師的人數(shù)為110×(170%)=33;高中部男教師的人數(shù)為150×60%=90,∴該校男教師的人數(shù)為33+90=123.故選:C.10、C【解析】設(shè)出雙曲線方程,根據(jù)題意,求得,即可選擇.【詳解】因為雙曲線的一個焦點(diǎn)是,故可設(shè)雙曲線方程為,且;又為一個頂點(diǎn),故可得,解得,則雙曲線方程為:.故選:.11、A【解析】由于對數(shù)函數(shù)的存在,故需要對進(jìn)行放縮,結(jié)合(需證明),可放縮為,利用等號成立可求出,進(jìn)而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當(dāng)且僅當(dāng),等號成立.所以,當(dāng)且僅當(dāng)時,等號成立,又,所以,即,所以,又,所以,,故故選:A12、B【解析】A.利用正切函數(shù)的性質(zhì)判斷;B.作出的圖象判斷;C.作出的圖象判斷;D.作出的圖象判斷.【詳解】A.是以為最小正周期,在上單調(diào)遞增,故錯誤;B.如圖所示:,由圖象知:函數(shù)是以為最小正周期,在上單調(diào)遞減,故正確;C.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯誤;D.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯誤;故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】利用向量平行和向量垂直的性質(zhì)列出方程組,求出,,再由空間向量坐標(biāo)運(yùn)算法則求出,由此能求出【詳解】解:設(shè),,向量,,,且,,,解得,,所以,,,故答案為:14、【解析】直接利用均值不等式得到答案.【詳解】,當(dāng)即時等號成立.故答案為【點(diǎn)睛】本題考查了均值不等式,意在考查學(xué)生的計算能力.15、2【解析】畫出不等式組對應(yīng)的可行域,平移動直線后可得目標(biāo)函數(shù)的最小值.【詳解】不等式組對應(yīng)的可行域如圖所示:將初始直線平移至點(diǎn)時,可取最小值,由可得,故,故答案為:2.16、【解析】根據(jù)題意求出,代入中,再利用裂項相消即可求出答案.【詳解】由是等差數(shù)列且,可知:,故.,數(shù)列的前2021項和為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)直線方程為或,切線段長度為4【解析】(1)先求圓的標(biāo)準(zhǔn)方程,由半徑最小則周長最??;(2)由,則圓的方程為:,直線和圓相切則圓心到直線的距離等于半徑,分直線與軸垂直和直線與軸不垂直兩種情況進(jìn)行討論即可得解.進(jìn)一步,利用圓的幾何性質(zhì)可求解切線的長度.【小問1詳解】,配方得:,當(dāng)時,圓的半徑有最小值2,此時圓的周長最小.【小問2詳解】由(1)得,,圓的方程為:.當(dāng)直線與軸垂直時,,此時直線與圓相切,符合條件;當(dāng)直線與軸不垂直時,設(shè)為,由直線與圓相切得:,解得,所以切線方程為,即.綜上,直線方程為或.圓心與點(diǎn)的距離,則切線長度為.18、(1);(2).【解析】(1)分別求出命題,均為真命題時的取值范圍,再求交集即可.(2)利用集合間的關(guān)系求解即可.【詳解】實數(shù)滿足不等式,即命題實數(shù)滿足不等式,即(1)當(dāng)時,命題,均為真命題,則且則實數(shù)的取值范圍為;(2)若是的充分不必要條件,則是的真子集則且解得故的取值范圍為.【點(diǎn)睛】判斷充分條件與必要條件應(yīng)注意:首先弄清條件和結(jié)論分別是什么,然后直接依據(jù)定義、定理、性質(zhì)嘗試.對于帶有否定性的命題或比較難判斷的命題,除借助集合思想化抽象為直觀外,還可利用原命題和逆否命題、逆命題和否命題的等價性,轉(zhuǎn)化為判斷它的等價命題;對于范圍問題也可以轉(zhuǎn)化為包含關(guān)系來處理.19、(1)(2)∠PFQ=90°【解析】(1)由題意得求出a,c,然后求解b,即可得到橢圓方程(2)當(dāng)直線l的斜率不存在時,驗證,即∠PFQ=90°.當(dāng)直線l的斜率存在時,設(shè)l:y=k(x﹣1),其中k≠0.聯(lián)立得(4k2+3)x2﹣8k2x+4k2﹣12=0.由題意,知Δ>0恒成立,設(shè)M(x1,y1),N(x2,y2),利用韋達(dá)定理,結(jié)合直線MA的方程為.求出、.利用向量的數(shù)量積,轉(zhuǎn)化求解即可【小問1詳解】由題意得解得a=2,c=1,從而,所以橢圓C的方程為【小問2詳解】當(dāng)直線l的斜率不存在時,有,,P(4,﹣3),Q(4,3),F(xiàn)(1,0),則,,故,即∠PFQ=90°當(dāng)直線l的斜率存在時,設(shè)l:y=k(x﹣1),其中k≠0聯(lián)立得(4k2+3)x2﹣8k2x+4k2﹣12=0由題意,知Δ>0恒成立,設(shè)M(x1,y1),N(x2,y2),則,直線MA的方程為,令x=4,得,即,同理可得所以,因為0,所以∠PFQ=90°綜上,∠PFQ=90°20、(1)或(2)3.【解析】(1)設(shè)切點(diǎn)坐標(biāo),由切點(diǎn)和圓心連線與切線垂直以及切點(diǎn)在圓上建立關(guān)系式,求解切點(diǎn)坐標(biāo)即可;(2)由圓的方程可得圓心坐標(biāo)及半徑,由APCQ為正方形,可得|AC|=可得圓心到直線的距離為,可得m的值【小問1詳解】解:設(shè)切點(diǎn)為,則有,解得:或x0=-2+1y0=-2,所以切點(diǎn)的坐標(biāo)為或【小問2詳解】解:圓C:的圓心(1,0),半徑r=2,設(shè),由題意可得,由四邊形APCQ為正方形,可得|AC|=,即,由題意直線l⊥AC,圓C:(x﹣1)2+y2=4,則圓心(1,0)到直線的距離,可得,m>0,解得m=3.21、(1)證明見解析(2)【解析】(1)由分別是的中點(diǎn),得到,在由是圓的直徑,所以,結(jié)合面面垂直的性質(zhì)定理,證得面,即可證得面;(2)以C為坐標(biāo)原點(diǎn),為x軸,為y軸,過C垂直于面直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的一個法向量,結(jié)合向量的夾角公式,即可求解.【小問1詳解】證明:在,因為分別是的中點(diǎn),所以,又因為是圓的直徑,所以,又由平面平面,平面平面,且平面,所以面,因為,所以面.【小問2詳解】解:由(1)知面,所以直線與平面所成角為,由題意知,以C為坐標(biāo)原點(diǎn),為x軸,為y軸,過C垂直于面的直線為z軸,建立空間直角坐標(biāo)系,如圖所示,可得,則,,設(shè)面的法向量為,則,取,可得,所以,設(shè)面的法向量為,則,取,可得,所以,則,所以銳二面角的余弦值為.22、(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陶藝課程設(shè)計論文
- 阿米巴管理課程設(shè)計
- 電力控制系統(tǒng)課程設(shè)計
- 2025年度物業(yè)服務(wù)勞務(wù)承包合同示范文本(適用于工業(yè)園區(qū))6篇
- 2025年3月工作總結(jié)(二篇)
- 2025年4月干部培訓(xùn)心得體會(2篇)
- 2025年10月工會換屆選舉的工作總結(jié)(二篇)
- 2025年三方合伙經(jīng)營門店協(xié)議(五篇)
- 2025年《教師職業(yè)道德》學(xué)習(xí)心得例文(2篇)
- 服裝店五一活動方案范文(2篇)
- 中國超大直徑鉆埋鋼管空心樁講義
- 藝術(shù)課程標(biāo)準(zhǔn)(2022年版)
- 一年級語文雨點(diǎn)兒-教學(xué)課件【希沃白板初階培訓(xùn)結(jié)營大作業(yè)】
- 替格瑞洛藥物作用機(jī)制、不良反應(yīng)機(jī)制、與氯吡格雷區(qū)別和合理使用
- GB/T 20920-2007電子水平儀
- 如何提高教師的課程領(lǐng)導(dǎo)力
- 企業(yè)人員組織結(jié)構(gòu)圖
- 日本疾病診斷分組(DPC)定額支付方式課件
- 實習(xí)證明模板免費(fèi)下載【8篇】
- 復(fù)旦大學(xué)用經(jīng)濟(jì)學(xué)智慧解讀中國課件03用大歷史觀看中國社會轉(zhuǎn)型
- 案件受理登記表模版
評論
0/150
提交評論