江蘇省南通如皋市2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析2_第1頁
江蘇省南通如皋市2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析2_第2頁
江蘇省南通如皋市2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析2_第3頁
江蘇省南通如皋市2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析2_第4頁
江蘇省南通如皋市2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析2_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南通如皋市2025屆高二上數(shù)學期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,設函數(shù),若關于的不等式恒成立,則的取值范圍為()A. B.C. D.2.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.33.若函數(shù),滿足且,則()A.1 B.2C.3 D.44.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于5.設等差數(shù)列,的前n項和分別是,,若,則()A. B.C. D.6.定義在區(qū)間上的函數(shù)的導函數(shù)的圖象如圖所示,則下列結論不正確的是()A.函數(shù)在區(qū)間上單調遞增 B.函數(shù)在區(qū)間上單調遞減C.函數(shù)在處取得極大值 D.函數(shù)在處取得極小值7.二項式的展開式中,各項二項式系數(shù)的和是()A.2 B.8C.16 D.328.如圖,M為OA的中點,以為基底,,則實數(shù)組等于()A. B.C. D.9.一輛汽車做直線運動,位移與時間的關系為,若汽車在時的瞬時速度為12,則()A. B.C.2 D.310.已知點在橢圓上,與關于原點對稱,,交軸于點,為坐標原點,,則橢圓離心率為()A. B.C. D.11.圓與圓的交點為A,B,則線段AB的垂直平分線的方程是A. B.C. D.12.已知為等差數(shù)列,為其前n項和,,則下列和與公差無關的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.沈陽市某高中有高一學生600人,高二學生500人,高三學生550人,現(xiàn)對學生關于消防安全知識了解情況進行分層抽樣調查,若抽取了一個容量為n的樣本,其中高三學生有11人,則n的值等于________.14.已知點F是拋物線的焦點,點,點P為拋物線上的任意一點,則的最小值為_________.15.已知點為雙曲線,右支上一點,,為雙曲線的左、右焦點,點為線段上一點,的角平分線與線段交于點,且滿足,則________;若為線段的中點且,則雙曲線的離心率為________16.過拋物線的準線上任意一點做拋物線的切線,切點分別為,則A點到準線的距離與點到準線的距離之和的最小值為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)“既要金山銀山,又要綠水青山”.濱江風景區(qū)在一個直徑為100米的半圓形花園中設計一條觀光線路(如圖所示).在點與圓弧上的一點(不同于A,B兩點)之間設計為直線段小路,在直線段小路的兩側(注意是兩側)種植綠化帶;再從點到點設計為沿弧的弧形小路,在弧形小路的內側(注意是一側)種植綠化帶(注:小路及綠化帶的寬度忽略不計).(1)設(弧度),將綠化帶總長度表示為的函數(shù);(2)試確定的值,使得綠化帶總長度最大.(弧度公式:,其中為弧所對的圓心角)18.(12分)已知圓C:的半徑為1(1)求實數(shù)a的值;(2)判斷直線l:與圓C是否相交?若不相交,請說明理由;若相交,請求出弦長19.(12分)圓心在軸正半軸上、半徑為2的圓與直線相交于兩點且.(1)求圓的標準方程;(2)若直線,圓上僅有一個點到直線的距離為1,求直線的方程.20.(12分)已知橢圓的焦距為,左、右焦點分別為,為橢圓上一點,且軸,,為垂足,為坐標原點,且(1)求橢圓的標準方程;(2)過橢圓的右焦點的直線(斜率不為)與橢圓交于兩點,為軸正半軸上一點,且,求點的坐標21.(12分)如圖,在平面直角坐標系xOy中,已知拋物線C:y2=4x的焦點為F,準線為l,過點F且斜率大于0的直線交拋物線C于A,B兩點(其中A在B的上方),過線段AB的中點M且與x軸平行的直線依次交直線OA、OB,l于點P、Q、N(1)試探索PM與NQ長度的大小關系,并證明你的結論;(2)當P、Q是線段MN的三等分點時,求直線AB的斜率;(3)當P、Q不是線段MN的三等分點時,證明:以點Q為圓心、線段QO長為半徑的圓Q不可能包圍線段NP22.(10分)已知直線,直線經(jīng)過點且與直線平行,設直線分別與x軸,y軸交于A,B兩點.(1)求點A和B的坐標;(2)若圓C經(jīng)過點A和B,且圓心C在直線上,求圓C的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題設易知上恒成立,而在上,討論、,結合導數(shù)研究的最值,由不等式恒成立求的取值范圍.【詳解】由時,在上;由時,在上遞減,值域為;令且,則,當時,,即遞增,值域為,滿足題設;當時,在上,即遞減,在上,即遞增,此時值域為;當,即時存在,而在中,此時,不合題設;所以,此時要使的不等式恒成立,只需,即,可得;綜上,關于的不等式恒成立,則的取值范圍為.故選:D【點睛】關鍵點點睛:由題設易知上,只需在上恒有即可.2、D【解析】求出拋物線C的準線l的方程,過A作l的垂線段,結合幾何意義及拋物線定義即可得解.【詳解】拋物線的準線l:,顯然點A在拋物線C內,過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D3、C【解析】先取,得與之間的關系,然后根據(jù)導數(shù)的運算直接求導,代值可得.【詳解】取,則有,即,又因為所以,所以,所以.故選:C4、D【解析】由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D考點:平面與平面的位置關系,平面的基本性質及其推論5、B【解析】利用求解.【詳解】解:因為等差數(shù)列,的前n項和分別是,所以.故選:B6、C【解析】根據(jù)函數(shù)的單調性和函數(shù)的導數(shù)的值的正負的關系,可判斷A,B的結論;根據(jù)函數(shù)的極值點和函數(shù)的導數(shù)的關系可判斷、的結論【詳解】函數(shù)在上,故函數(shù)在上單調遞增,故正確;根據(jù)函數(shù)的導數(shù)圖象,函數(shù)在時,,故函數(shù)在區(qū)間上單調遞減,故正確;由A的分析可知函數(shù)在上單調遞增,故不是函數(shù)的極值點,故錯誤;根據(jù)函數(shù)的單調性,在區(qū)間上單調遞減,在上單調遞增,故函數(shù)處取得極小值,故正確,故選:7、D【解析】根據(jù)給定條件利用二項式系數(shù)的性質直接計算作答.【詳解】二項式的展開式的各項二項式系數(shù)的和是.故選:D8、B【解析】根據(jù)空間向量減法的幾何意義進行求解即可.【詳解】,所以實數(shù)組故選:B9、D【解析】首先求出函數(shù)的導函數(shù),依題意可得,即可解得;【詳解】解:因為,所以又汽車在時的瞬時速度為12,即即,解得故選:D【點睛】本題考查導數(shù)在物理中的應用,屬于基礎題.10、B【解析】由,得到,結合,得到,進而求得,得出,結合離心率的定義,即可求解.【詳解】設,則,由,可得,所以,因為,可得,又由,兩式相減得,即,即,又因為,所以,即又由,所以,解得.故選:B.11、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關系時,往往結合平面幾何知識(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過兩圓的圓心的直線方程)可減小運算量.12、C【解析】依題意根據(jù)等差數(shù)列的通項公式可得,再根據(jù)等差數(shù)列前項和公式計算可得;【詳解】解:因為,所以,即,所以,,,,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、33【解析】根據(jù)分層抽樣的性質進行求解即可.【詳解】因為抽取了一個容量為n的樣本,其中高三學生有11人,所以有,故答案為:3314、3【解析】根據(jù)拋物線的定義可求最小值.【詳解】如圖,過作拋物線準線的垂線,垂足為,連接,則,當且僅當共線時等號成立,故的最小值為3,故答案為:3.15、①.②.【解析】過作,交于點,作,交于點,由向量共線定理可得;再由角平分線性質定理和雙曲線的定義、結合余弦定理和離心率公式,可得所求值【詳解】解:過作交于點,作交于點,由,得,由角平分線定理;因為為的中點,所以,由雙曲線的定義,,所以,,,在中,由余弦定理,所以.故答案為:;.【點睛】本題考查雙曲線的定義、方程和性質,以及角平分線的性質定理和余弦定理的運用,考查方程思想和運算能力,屬于中檔題16、8【解析】設,,,,由可得,根據(jù)導數(shù)的幾何意義求得兩切線的方程,聯(lián)立求得點的坐標,再根到準線的距離轉化為到焦點的距離,三點共線時距離最小,進而求出最小值【詳解】解:設,,,,由可得,所以,所以直線,的方程分別為:,,聯(lián)立,解得,即,,又有在準線上,所以,所以,設直線的方程為:,代入拋物線的方程可得:,可得,所以可得,即直線恒過點,即直線恒過焦點,即直的方程為:,代入拋物線的方程:,,所以,點到準線的距離與點到準線的距離之和,所以當時,距離之和最小且為8,這時直線平行于軸故答案為:8三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧長公式求出弧的長度,則可得函數(shù);(2)利用導數(shù)可求得結果.【詳解】(1)如圖,連接在直角三角形中,所以由于則弧的長為(2)由(1)可知,令得,因為所以,當單調遞增,當單調遞減,所以當時,使得綠化帶總長度最大.【點睛】關鍵點點睛:仔細審題,注意題目中的關鍵詞“兩側”和“一側”是解題關鍵.18、(1);(2)直線l與圓C相交,.【解析】(1)利用配方法進行求解即可;(2)根據(jù)點到直線距離公式,結合圓的弦長公式進行求解即可.【小問1詳解】將化為標準方程得:因為圓C的半徑為1,所以,得【小問2詳解】由(1)知圓C的圓心為,半徑為1設圓心C到直線l的距離為d,則,所以直線l與圓C相交,設其交點為A,B,則,即19、(1);(2)或.【解析】(1)根據(jù)圓的弦長公式進行求解即可;(2)根據(jù)平行線的性質,結合直線與圓的位置關系進行求解即可.小問1詳解】因為圓的圓心在軸正半軸上、半徑為2,所以設方程為:,圓心,設圓心到直線的距離為,因為,所以有,或舍去,所以圓的標準方程為;【小問2詳解】由(1)可知:,圓的半徑為,因為直線,所以設直線的方程為,因為圓上僅有一個點到直線的距離為1,所以直線與該圓相離,當兩平行線間的距離為,于是有:,當時,圓心到直線的距離為:,符合題意;當時,圓心到直線的距離為::,不符合題意,此時直線的方程為.當兩平行線間的距離為,于是有:,當時,圓心到直線的距離為:,不符合題意;當時,圓心到直線的距離為::,不符合題意,此時直線的方程為.故直線方程為或.20、(1)(2)【解析】(1)利用△∽△構造齊次方程,求出離心率,再利用焦距即可求出橢圓方程;(2)將直線方程與橢圓方程聯(lián)立利用韋達定理求出和,利用幾何關系可知,即可得,將韋達定理代入化簡即可求得點坐標.【小問1詳解】∵橢圓的焦距為,∴,即,軸,∴,則,由,,則△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,則橢圓的標準方程為,【小問2詳解】設直線的方程為,且,將直線方程與橢圓方程聯(lián)立得,,則,,∵,∴,∴,∴,∴,即.21、(1),證明見解析(2)(3)證明見解析【解析】(1)根據(jù)已知條件設出直線方程及,與拋物線的方程聯(lián)立,利用韋達定理和中點坐標公式,三點共線的性質即可求解;(2)根據(jù)已知條件得出,運用韋達定理和弦長公式,可得出直線的斜率;(3)根據(jù)(1)的結論及求根公式,求得點的坐標,結合的表達式,結合圖形可知,由的范圍和的取值即可證明.【小問1詳解】由題意可知,拋物線的焦點為,設直線的方程為,則,消去,得,,,所以直線的方程為,由因為三點共線,所以,,同理,,,所以,所以.【小問2詳解】因為P、Q是線段MN的三等分點,所以,,,又,,所以,所以,解得或(舍)所以直線AB的斜率為.【小問3詳解】由(1)知,,得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論