版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
臨川一中實驗學校2025屆數(shù)學高一上期末教學質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.“密位制”是用于航海方面的一種度量角的方法,我國采用的“密位制”是密位制,即將一個圓周角分為等份,每一個等份是一個密位,那么密位對應(yīng)弧度為()A. B.C. D.2.若函數(shù)滿足且的最小值為,則函數(shù)的單調(diào)遞增區(qū)間為A. B.C. D.3.若方程表示圓,則實數(shù)的取值范圍為()A. B.C. D.4.已知命題,,命題,,則下列命題中為真命題的是()A. B.C. D.5.“”是“函數(shù)為偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.若某商店將進貨單價為6元的商品按每件10元出售,則每天可銷售100件.現(xiàn)準備采用提高售價、減少進貨量的方法來增加利潤.已知這種商品的售價每提高1元,銷售量就要減少10件,那么要保證該商品每天的利潤在450元以上,售價的取值范圍是()A. B.C. D.7.已知,,,則a,b,c的大小關(guān)系是()A. B.C. D.8.下列四個函數(shù)中,在其定義域上既是奇函數(shù)又是增函數(shù)的是()A. B.y=tanxC.y=lnx D.y=x|x|9.下列關(guān)于函數(shù)的說法不正確的是()A.在區(qū)間上單調(diào)遞增B.最小正周期是2C.圖象關(guān)于直線軸對稱D.圖象關(guān)于點中心對稱10.若,則有()A.最小值為3 B.最大值為3C.最小值為 D.最大值為二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)集合,對其子集引進“勢”的概念;①空集的“勢”最??;②非空子集的元素越多,其“勢”越大;③若兩個子集的元素個數(shù)相同,則子集中最大的元素越大,子集的“勢”就越大.最大的元素相同,則第二大的元素越大,子集的“勢”就越大,以此類推.若將全部的子集按“勢”從小到大順序排列,則排在第位的子集是_________.12.已知冪函數(shù)圖像過點,則該冪函數(shù)的解析式是______________13.已知則_______.14.若,,則______15.cos(-225°)=______16.命題“”的否定是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角終邊上一點.(1)求的值;(2)求的值.18.已知二次函數(shù)滿足,且求的解析式;設(shè),若存在實數(shù)a、b使得,求a的取值范圍;若對任意,都有恒成立,求實數(shù)t取值范圍19.已知函數(shù)(且).(1)判斷函數(shù)的奇偶性,并證明;(2)若,不等式在上恒成立,求實數(shù)的取值范圍;(3)若且在上最小值為,求m的值.20.已知函數(shù),且滿足.(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;(2)設(shè)函數(shù),求在區(qū)間上的最大值;(3)若存在實數(shù)m,使得關(guān)于x的方程恰有4個不同的正根,求實數(shù)m的取值范圍.21.已知函數(shù)是上的奇函數(shù).(1)求的值;(2)比較與0的大小,并說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)弧度制公式即可求得結(jié)果【詳解】密位對應(yīng)弧度為故選:B2、D【解析】分析:首先根據(jù)誘導(dǎo)公式和輔助角公式化簡函數(shù)解析式,之后應(yīng)用題的條件求得函數(shù)的最小正周期,求得的值,從而求得函數(shù)解析式,之后利用整體思維,借助于正弦型函數(shù)的解題思路,求得函數(shù)的單調(diào)增區(qū)間.詳解:,根據(jù)題中條件滿足且的最小值為,所以有,所以,從而有,令,整理得,從而求得函數(shù)的單調(diào)遞增區(qū)間為,故選D.點睛:該題考查的是有關(guān)三角函數(shù)的綜合問題,涉及到的知識點有誘導(dǎo)公式、輔助角公式、函數(shù)的周期以及正弦型函數(shù)的單調(diào)區(qū)間的求法,在結(jié)題的過程中,需要對各個知識點要熟記,解題方法要明確.3、D【解析】將方程化為標準式即可.【詳解】方程化為標準式得,則.故選:D.4、D【解析】先判斷命題的真假,再利用復(fù)合命題的真假判斷得解.【詳解】解:方程的,故無解,則命題p為假;而,故命題q為真;故命題、、均為假命題,為真命題.故選:D5、A【解析】根據(jù)充分必要條件的定義判斷【詳解】時,是偶函數(shù),充分性滿足,但時,也是偶函數(shù),必要性不滿足應(yīng)是充分不必要條件故選:A6、B【解析】根據(jù)題意列出函數(shù)關(guān)系式,建立不等式求解即可.【詳解】設(shè)售價為,利潤為,則,由題意,即,解得,即售價應(yīng)定為元到元之間,故選:B.7、B【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性分析出的范圍,根據(jù)對數(shù)函數(shù)的單調(diào)性分析出的范圍,結(jié)合中間值,即可判斷出的大小關(guān)系.【詳解】因為在上單調(diào)遞減,所以,所以,又因為且在上單調(diào)遞增,所以,所以,又因為在上單調(diào)遞減,所以,所以,綜上可知:,故選:B.【點睛】方法點睛:常見的比較大小的方法:(1)作差法:作差與作比較;(2)作商法:作商與作比較(注意正負);(3)函數(shù)單調(diào)性法:根據(jù)函數(shù)單調(diào)性比較大??;(4)中間值法:取中間值進行大小比較.8、D【解析】由奇偶性排除AC,由增減性排除B,D選項符合要求.【詳解】,不是奇函數(shù),排除AC;定義域為,而在上為增函數(shù),故在定義域上為增函數(shù)的說法是不對的,C錯誤;滿足,且在R上為增函數(shù),故D正確.故選:D9、D【解析】結(jié)合三角函數(shù)的性質(zhì),利用整體代換思想依次討論各選項即可得答案.【詳解】當時,,此時函數(shù)為增函數(shù),所以函數(shù)在區(qū)間上單調(diào)遞增,A選項正確;由函數(shù)周期公式,B選項正確;當時,,由于是的對稱軸,故直線是函數(shù)的對稱軸,C選項正確.當時,,由于是的對稱軸,故不是函數(shù)的中心對稱,D選項錯誤;故選:D.10、A【解析】利用基本不等式即得,【詳解】∵,∴,∴,當且僅當即時取等號,∴有最小值為3.故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題意依次按“勢”從小到大順序排列,得到答案.【詳解】根據(jù)題意,將全部的子集按“勢”從小到大順序排列為:,,,,,,,.故排在第6的子集為.故答案為:12、【解析】設(shè)出冪函數(shù)的函數(shù)表達,然后代點計算即可.【詳解】設(shè),因為,所以,所以函數(shù)的解析式是故答案為:.13、【解析】因為,所以14、【解析】利用指數(shù)的運算性質(zhì)可求得結(jié)果.【詳解】由指數(shù)的運算性質(zhì)可得.故答案為:.15、【解析】直接利用誘導(dǎo)公式求知【詳解】【點睛】本題考查利用誘導(dǎo)公式求知,一般按照以下幾個步驟:負化正,大化小,劃到銳角為終了同時在轉(zhuǎn)化時需注意“奇變偶不變,符號看象限.”16、【解析】根據(jù)全稱命題的否定是特稱命題,寫出結(jié)論.【詳解】原命題是全稱命題,故其否定是特稱命題,所以原命題的否定是“”.【點睛】本小題主要考查全稱命題的否定是特稱命題,除了形式上的否定外,還要注意否定結(jié)論,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)4;(2).【解析】(1)根據(jù)三角函數(shù)的定義可求出,然后分子分母同時除以,將弦化切,即可求出結(jié)果;(2)根據(jù)三角函數(shù)的定義可求出,,再利用誘導(dǎo)公式將表達式化簡,即可求出結(jié)果.【詳解】解:(1)因為終邊上一點,所以,所以.(2)已知角終邊上一點,則,所以,,所以18、(1);(2)或;(3).【解析】利用待定系數(shù)法求出二次函數(shù)的解析式;求出函數(shù)的值域,再由題意得出關(guān)于a的不等式,求出解集即可;由題意知對任意,都有,討論t的取值,解不等式求出滿足條件的t的取值范圍【詳解】解:設(shè),因為,所以;;;;;解得:;;函數(shù),若存在實數(shù)a、b使得,則,即,,解得或,即a的取值范圍是或;由題意知,若對任意,都有恒成立,即,故有,由,;當時,在上為增函數(shù),,解得,所以;當,即時,在區(qū)間上單調(diào)減函數(shù),,解得,所以;當,即時,,若,則,解得;若,則,解得,所以,應(yīng)??;綜上所述,實數(shù)t的取值范圍是【點睛】本題考查了不等式恒成立問題,也考查了分類討論思想與轉(zhuǎn)化思想,屬于難題19、(1)為奇函數(shù),證明見解析.(2).(3).【解析】(1)根據(jù)函數(shù)的奇偶性的定義可得證;(2)由(1)得出是定義域為的奇函數(shù),再判斷出是上的單調(diào)遞增,進而轉(zhuǎn)化為,進而可求解;(3)利用,可得到,所以,令,則,進而對二次函數(shù)對稱軸討論求得最值即可求出的值.【小問1詳解】解:函數(shù)的定義域為,又,∴為奇函數(shù).【小問2詳解】解:,∵,∴,或(舍).∴單調(diào)遞增.又∵為奇函數(shù),定義域為R,∴,∴所以不等式等價于,,,∴.故的取值范圍為.【小問3詳解】解:,解得(舍),,令,∵,∴,,當時,,解得(舍),當時,,解得(舍),綜上,.20、(1)見解析(2)時,.(3)【解析】(1)根據(jù)確定a.再任取兩數(shù),作差,通分并根據(jù)分子分母符號確定差的符號,最后根據(jù)定義確定函數(shù)單調(diào)性(2)先根據(jù)絕對值定義將函數(shù)化為分段函數(shù),都可化為二次函數(shù),再根據(jù)對稱軸與定義區(qū)間位置關(guān)系確定最值,最后取兩個最大值中較大值(3)先對方程變形得,設(shè),轉(zhuǎn)化為方程方程在有兩個不等的根,根據(jù)二次函數(shù)圖像,得實根分布條件,解得實數(shù)m的取值范圍.試題解析:(1)由,得或0.因為,所以,所以.當時,,任取,且,則,因為,則,,所以在上為增函數(shù);(2),當時,,因為,所以當時,;當時,,因為時,所以,所以當時,;綜上,當即時,.(3)由(1)可知,在上為增函數(shù),當時,.同理可得在上為減函數(shù),當時,.方程可化為,即.設(shè),方程可化為.要使原方程有4個不同的正根,則方程在有兩個不等的根,則有,解得,所以實數(shù)m的取值范圍為.21、(1);(2)【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《不良生活習慣》課件
- 2024年版特定股權(quán)轉(zhuǎn)讓與業(yè)績保障協(xié)議版B版
- 房本除名登記協(xié)議書
- 2024年新型數(shù)字媒體內(nèi)容制作與傳播采購合同3篇
- 2025年綏化貨車資格證考試題
- 《狼性臧其超作品》課件
- 2025年萊蕪駕校考試貨運從業(yè)資格證模擬考試
- 2025年聊城道路運輸從業(yè)人員從業(yè)資格考試
- 2025年防城港貨運從業(yè)資格證考試題庫答案
- 《初中作文結(jié)構(gòu)篇圖》課件
- 醫(yī)療行業(yè)工會主席選舉的實施細則
- 校園心理健康教育文化建設(shè)方案
- 李斯列傳課件教學課件
- 電工技能與實訓(第4版)教學指南 高教版
- 降低患者外出檢查漏檢率-品管圈課件
- 人教版小學四年級體育上冊全冊教案
- 虛擬電廠及管控管理平臺建設(shè)總體方案
- 新高考數(shù)學專題復(fù)習專題42圓錐曲線中的向量問題專題練習(學生版+解析)
- 湖北華師大一附中2024-2025學年度10月月考高三英語試題
- 昆蟲的裝死課件
- 人教版英語2024七年級上冊全冊單元知識清單(背誦版)
評論
0/150
提交評論