山西省晉城市2025屆高一數(shù)學第一學期期末達標檢測試題含解析_第1頁
山西省晉城市2025屆高一數(shù)學第一學期期末達標檢測試題含解析_第2頁
山西省晉城市2025屆高一數(shù)學第一學期期末達標檢測試題含解析_第3頁
山西省晉城市2025屆高一數(shù)學第一學期期末達標檢測試題含解析_第4頁
山西省晉城市2025屆高一數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省晉城市2025屆高一數(shù)學第一學期期末達標檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.過原點和直線與的交點的直線的方程為()A. B.C. D.2.在實數(shù)的原有運算法則中,補充定義新運算“”如下:當時,;當時,,已知函數(shù),則滿足的實數(shù)的取值范圍是A. B.C. D.3.已知角頂點與原點重合,始邊與軸的正半軸重合,點在角的終邊上,則()A. B.C. D.4.已知命題:,,那么命題為()A., B.,C., D.,5.直線(為實常數(shù))的傾斜角的大小是A B.C. D.6.已知函數(shù),則下列區(qū)間中含有的零點的是()A. B.C. D.7.已知集合,,則()A. B.C. D.8.某幾何體的三視圖如圖所示,則該幾何體的表面積等于A. B.C. D.159.已知函數(shù)冪函數(shù),且在其定義域內為單調函數(shù),則實數(shù)()A. B.C.或 D.10.函數(shù)f(x)=2x+x-2的零點所在區(qū)間是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù),若最大值為,最小值為,,則的取值范圍是______.12.已知集合,.若,則___________.13.關于函數(shù)與有下面三個結論:①函數(shù)的圖像可由函數(shù)的圖像平移得到②函數(shù)與函數(shù)在上均單調遞減③若直線與這兩個函數(shù)的圖像分別交于不同的A,B兩點,則其中全部正確結論的序號為____14.已知角A為△ABC的內角,cosA=-4515.一個幾何體的三視圖如圖所示,其中正視圖與側視圖都是斜邊長為4的直角三角形,俯視圖是半徑為2的四分之一圓周和兩條半徑,則這個幾何體的體積為______16.直線的傾斜角為,直線的傾斜角為,則__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求不等式的解集;(2)將圖像上所有點的橫坐標縮短為原來的(縱坐標不變),再將所得圖像向右平移個單位長度,得到函數(shù)的圖像.求在區(qū)間上的值域18.已知奇函數(shù)(a為常數(shù))(1)求a的值;(2)若函數(shù)有2個零點,求實數(shù)k的取值范圍;19.考慮到高速公路行車安全需要,一般要求高速公路的車速(公里/小時)控制在范圍內.已知汽車以公里/小時的速度在高速公路上勻速行駛時,每小時的油耗(所需要的汽油量)為升,其中為常數(shù),不同型號汽車值不同,且滿足.(1)若某型號汽車以120公里/小時的速度行駛時,每小時的油耗為升,欲使這種型號的汽車每小時的油耗不超過9升,求車速的取值范圍;(2)求不同型號汽車行駛100千米的油耗的最小值.20.(1)計算:;(2)已知,求的值.21.已知函數(shù),其中(1)求函數(shù)的定義域;(2)判斷的奇偶性,并說明理由;(3)若,求使成立的的集合

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】先求出兩直線的交點,從而可得所求的直線方程.【詳解】由可得,故過原點和交點的直線為即,故選:C.2、C【解析】當時,;當時,;所以,易知,在單調遞增,在單調遞增,且時,,時,,則在上單調遞增,所以得:,解得,故選C點睛:新定義的題關鍵是讀懂題意,根據(jù)條件,得到,通過單調性分析,得到在上單調遞增,解不等式,要符合定義域和單調性的雙重要求,則,解得答案3、D【解析】先根據(jù)三角函數(shù)的定義求出,然后采用弦化切,代入計算即可【詳解】因為點在角的終邊上,所以故選:D4、B【解析】利用含有一個量詞的命題的否定的定義判斷.【詳解】因為命題:,是全稱量詞命題,所以其否定是存在量詞命題,即,,故選:B5、D【解析】計算出直線的斜率,再結合傾斜角的取值范圍可求得該直線的傾斜角.【詳解】設直線傾斜角為,直線的斜率為,所以,,則.故選:D.【點睛】本題考查直線傾斜角的計算,一般要求出直線的斜率,考查計算能力,屬于基礎題.6、C【解析】分析函數(shù)的單調性,利用零點存在定理可得出結論.【詳解】由于函數(shù)為增函數(shù),函數(shù)在和上均為增函數(shù),所以,函數(shù)在和上均為增函數(shù).對于A選項,當時,,,此時,,所以,函數(shù)在上無零點;對于BCD選項,當時,,,由零點存在定理可知,函數(shù)的零點在區(qū)間內.故選:C.7、D【解析】利用對數(shù)函數(shù)與指數(shù)函數(shù)的性質化簡集合,再根據(jù)集合交集的定義求解即可.【詳解】因為,,所以,,則,故選:D.8、B【解析】根據(jù)三視圖可知,該幾何體為一個直四棱柱,底面是直角梯形,兩底邊長分別為,高為,直四棱柱的高為,所以底面周長為,故該幾何體的表面積為,故選B考點:1.三視圖;2.幾何體的表面積9、A【解析】由冪函數(shù)的定義可得出關于的等式,求出的值,然后再將的值代入函數(shù)解析式進行檢驗,可得結果.【詳解】因為函數(shù)為冪函數(shù),則,即,解得或.若,函數(shù)解析式為,該函數(shù)在定義域上不單調,舍去;若,函數(shù)解析式,該函數(shù)在定義域上為增函數(shù),合乎題意.綜上所述,.故選:A.10、C【解析】根據(jù)函數(shù)零點的存在性定理可得函數(shù)零點所在的區(qū)間【詳解】解:函數(shù),,(1),根據(jù)函數(shù)零點的存在性定理可得函數(shù)零點所在的區(qū)間為,故選C【點睛】本題主要考查函數(shù)的零點的存在性定理的應用,屬于基礎題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先化簡,然后分析的奇偶性,將的最大值和小值之和轉化為和有關的式子,結合對勾函數(shù)的單調性求解出的取值范圍.【詳解】,令,定義域為關于原點對稱,∴,∴為奇函數(shù),∴,∴,,由對勾函數(shù)的單調性可知在上單調遞減,在上單調遞增,∴,,,∴,∴,故答案為:.【點睛】關鍵點點睛:解答本題的關鍵在于函數(shù)奇偶性的判斷,同時需要注意到奇函數(shù)在定義域上如果有最值,那么最大值和最小值一定是互為相反數(shù).12、【解析】根據(jù)給定條件可得,由此列式計算作答.【詳解】因集合,,且,于是得,即,解得,所以.故答案為:13、①②##②①【解析】根據(jù)三角函數(shù)的平移法則和單調性知①②正確,取代入計算得到③錯誤,得到答案.【詳解】向左平移個單位得到,①正確;函數(shù)在上單調遞減,函數(shù)在上單調遞減,②正確;取,則,,,③錯誤.故答案為:①②14、35【解析】根據(jù)同角三角函數(shù)的關系,結合角A的范圍,即可得答案.【詳解】因為角A為△ABC的內角,所以A∈(0,π),因為cosA=-所以sinA=故答案為:315、【解析】由題得幾何體為圓錐的,根據(jù)三視圖的數(shù)據(jù)計算體積即可【詳解】由三視圖可知幾何體為圓錐的,圓錐的底面半徑為2,母線長為4,∴圓錐的高為∴V=×π×22×=故答案為【點睛】本題主要考查了圓錐的三視圖和體積計算,屬于基礎題16、【解析】,所以,,故.填三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),.(2).【解析】(1)利用輔助角公式化簡函數(shù)的解析式,根據(jù)正弦函數(shù)的性質可求得答案;(2)根據(jù)函數(shù)的圖象變換得到函數(shù)的解析式,再由正弦函數(shù)的性質可求得的值域.【小問1詳解】解:因為,∴,即,所以,即,,∴的解集為,【小問2詳解】解:由題可知,當時,,所以,所以,所以在區(qū)間上值域為18、(1)(2)【解析】(1)由奇函數(shù)中求解即可;(2)函數(shù)有2個零點,可轉為為也即函數(shù)與的圖象有兩個交點,結合圖象即可求解【小問1詳解】由是上的奇函數(shù),可得,所以,解得,經(jīng)檢驗滿足奇函數(shù),所以;【小問2詳解】函數(shù)有2個零點,可得方程函數(shù)有2個根,即有2個零點,也即函數(shù)與的圖象有兩個交點,由圖象可知所以實數(shù)得取值范圍是19、(1);(2)當時,該汽車行駛100千米的油耗的最小值為升;當時,該汽車行駛100千米的油耗的最小值為升.【解析】(1)根據(jù)題意,可知當時,求出的值,結合條件得出,再結合,即可得出車速的取值范圍;(2)設該汽車行駛100千米的油耗為升,得出關于與的函數(shù)關系式,通過換元令,則,得出與的二次函數(shù),再根據(jù)二次函數(shù)的圖象和性質求出的最小值,即可得出不同型號汽車行駛100千米的油耗的最小值.【小問1詳解】解:由題意可知,當時,,解得:,由,即,解得:,因為要求高速公路的車速(公里/小時)控制在范圍內,即,所以,故汽車每小時的油耗不超過9升,求車速的取值范圍.【小問2詳解】解:設該汽車行駛100千米的油耗為升,則,令,則,所以,,可得對稱軸為,由,可得,當時,即時,則當時,;當,即時,則當時,;綜上所述,當時,該汽車行駛100千米的油耗的最小值為升;當時,該汽車行駛100千米的油耗的最小值為升.20、(1);(2).【解析】(1)利用湊特殊角的方法結合和角的正弦公式化簡求解作答;(2)將給定等式兩邊平方,再利用二倍公式、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論