版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
貴州省鳳岡縣二中2025屆數(shù)學高一上期末經(jīng)典試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.三條直線,,相交于一點,則的值是A.-2 B.-1C.0 D.12.冪函數(shù)的圖象經(jīng)過點,則()A.是偶函數(shù),且在上單調(diào)遞增B.是偶函數(shù),且在上單調(diào)遞減C.是奇函數(shù),且在上單調(diào)遞減D.既不是奇函數(shù),也不是偶函數(shù),在上單調(diào)遞增3.對任意正實數(shù),不等式恒成立,則實數(shù)的取值范圍是()A. B.C. D.4.《九章算術(shù)》中,稱底面為矩形且有一側(cè)棱垂直于底面的四棱錐為陽馬,如圖,某陽馬的三視圖如圖所示,則該陽馬的最長棱的長度為()A. B.C.2 D.5.不等式的解集是A. B.C. D.6.基本再生數(shù)R0與世代間隔T是新冠肺炎流行病學基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天7.設(shè),且,則等于()A.100 B.C. D.8.設(shè)長方體的長、寬、高分別為,其頂點都在一個球面上,則該球的表面積為A.3a2 B.6a2C.12a2 D.24a29.將函數(shù)的圖象向左平移個單位長度,所得圖象的函數(shù)解析式為A. B.C. D.10.若一束光線從點射入,經(jīng)直線反射到直線上的點,再經(jīng)直線反射后經(jīng)過點,則點的坐標為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊上一點P與點關(guān)于y軸對稱,角的終邊上一點Q與點A關(guān)于原點O中心對稱,則______12.圓的半徑是6cm,則圓心角為30°的扇形面積是_________13.已知甲、乙、丙三人去參加某公司面試,他們被該公司錄取的概率分別是,且三人錄取結(jié)果相互之間沒有影響,則他們?nèi)酥星∮袃扇吮讳浫〉母怕蕿開__________.14.函數(shù)的最小正周期是__________15.已知函數(shù)()的部分圖象如圖所示,則的解析式是___________.16.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點是側(cè)面的中心,則與平面所成角的大小是______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標系中,以軸的非負半軸為始邊的銳角的終邊與單位圓相交于點,已知的橫坐標為.(1)求的值;(2)求的值.18.已知,其中為奇函數(shù),為偶函數(shù).(1)求與的解析式;(2)判斷函數(shù)在其定義域上的單調(diào)性(不需證明);(3)若不等式恒成立,求實數(shù)的取值范圍.19.已知為銳角,,(1)求和的值;(2)求和的值20.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若c=2a,bsinB﹣asinA=asinC(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值21.已知若,求方程的解;若關(guān)于x的方程在區(qū)間上有兩個不相等的實根、:求實數(shù)k的取值范圍;證明:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】聯(lián)立兩條已知直線求得交點坐標,待定系數(shù)即可求得參數(shù)值.【詳解】聯(lián)立與可得交點坐標為,又其滿足直線,故可得,解得.故選:.2、D【解析】設(shè)冪函數(shù)方程,將點坐標代入,可求得的值,根據(jù)冪函數(shù)的性質(zhì),即可求得答案.【詳解】設(shè)冪函數(shù)的解析式為:,將代入解析式得:,解得,所以冪函數(shù),所以既不是奇函數(shù),也不是偶函數(shù),且,所以在上單調(diào)遞增.故選:D.3、C【解析】先根據(jù)不等式恒成立等價于,再根據(jù)基本不等式求出,即可求解.【詳解】解:,即,即又當且僅當“”,即“”時等號成立,即,故.故選:C.4、B【解析】根據(jù)三視圖畫出原圖,從而計算出最長的棱長.【詳解】由三視圖可知,該幾何體如下圖所示,平面,,則所以最長的棱長為.故選:B5、A【解析】利用指數(shù)式的單調(diào)性化指數(shù)不等式為一元二次不等式求解【詳解】由,得,∴8﹣x2>﹣2x,即x2﹣2x﹣8<0,解得﹣2<x<4∴不等式解集是{x|﹣2<x<4}故選A【點睛】本題考查指數(shù)不等式的解法,考查了指數(shù)函數(shù)的單調(diào)性,是基礎(chǔ)題6、B【解析】根據(jù)題意可得,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結(jié)果.【詳解】因為,,,所以,所以,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點睛】本題考查了指數(shù)型函數(shù)模型的應(yīng)用,考查了指數(shù)式化對數(shù)式,屬于基礎(chǔ)題.7、C【解析】由,得到,再由求解.【詳解】因為,所以,則,所以,則,解得,故選:C8、B【解析】方體的長、寬、高分別為,其頂點都在一個球面上,長方體的對角線的長就是外接球的直徑,所以球直徑為:,所以球的半徑為,所以球的表面積是,故選B9、A【解析】依題意將函數(shù)的圖象向左平移個單位長度得到:故選10、C【解析】由題可求A關(guān)于直線的對稱點為及關(guān)于直線的對稱點為,可得直線的方程,聯(lián)立直線,即得.【詳解】設(shè)A關(guān)于直線的對稱點為,則,解得,即,設(shè)關(guān)于直線的對稱點為,則,解得,即,∴直線的方程為:代入,可得,故.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、0【解析】根據(jù)對稱,求出P、Q坐標,根據(jù)三角函數(shù)定義求出﹒【詳解】解:角終邊上一點與點關(guān)于軸對稱,角的終邊上一點與點關(guān)于原點中心對稱,由三角函數(shù)的定義可知,﹒故答案為:012、3π【解析】根據(jù)扇形的面積公式即可計算.【詳解】,.故答案為:3π.13、##0.15【解析】利用相互獨立事件概率乘法公式分別求出甲和乙被錄取的概率、甲和丙被錄取的概率、乙和丙被錄取的概率,然后即可求出他們?nèi)酥星∮袃扇吮讳浫〉母怕?【詳解】因為甲、乙、丙三人被該公司錄取的概率分別是,且三人錄取結(jié)果相互之間沒有影響,甲和乙被錄取的概率為,甲和丙被錄取的概率為,乙和丙被錄取的概率為則他們?nèi)酥星∮袃扇吮讳浫〉母怕蕿?,故答案為?14、【解析】根據(jù)正弦函數(shù)的最小正周期公式即可求解【詳解】因為由正弦函數(shù)的最小正周期公式可得故答案為:15、【解析】由圖可知,,得,從而,所以,然后將代入,得,又,得,因此,,注意最后確定的值時,一定要代入,而不是,否則會產(chǎn)生增根.考點:三角函數(shù)的圖象與性質(zhì).16、60°【解析】取BC的中點E,則,則即為所求,設(shè)棱長為2,則,三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)三角函數(shù)的定義,直接求解;(2)求出,再根據(jù)兩角和的余弦公式求解即可.【小問1詳解】設(shè),由已知,,,所以,得.【小問2詳解】由(1)知,,所以18、(1),;(2)函數(shù)在其定義域上為減函數(shù);(3).【解析】(1)由與可建立有關(guān)、的方程組,可得解出與的解析式;(2)化簡函數(shù)解析式,根據(jù)函數(shù)的解析式可直接判斷函數(shù)的單調(diào)性;(3)將所求不等式變形為,根據(jù)函數(shù)的定義域、單調(diào)性可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】(1)由于函數(shù)為奇函數(shù),為偶函數(shù),,,即,所以,,解得,.由,可得,所以,,;(2)函數(shù)的定義域為,,所以,函數(shù)在其定義域上為減函數(shù);(3)由于函數(shù)為定義域上的奇函數(shù),且為減函數(shù),由,可得,由題意可得,解得.因此,實數(shù)的取值范圍是.【點睛】思路點睛:根據(jù)函數(shù)單調(diào)性求解函數(shù)不等式的思路如下:(1)先分析出函數(shù)在指定區(qū)間上的單調(diào)性;(2)根據(jù)函數(shù)單調(diào)性將函數(shù)值的關(guān)系轉(zhuǎn)變?yōu)樽宰兞恐g的關(guān)系,并注意定義域;(3)求解關(guān)于自變量的不等式,從而求解出不等式的解集.19、(1),(2),【解析】(1)由為銳角,可求出,利用同角之間的關(guān)系可求出,由正弦的兩角和求.(2)利用同角之間的關(guān)系可求出,根據(jù)結(jié)合余弦的差角公式可得出答案.【小問1詳解】因為為銳角,且,所以所以【小問2詳解】因為為銳角,所以所以所以20、(Ⅰ)(Ⅱ)【解析】(Ⅰ)根據(jù)條件由正弦定理得,又c=2a,所以,由余弦定理算出,進而算出;(Ⅱ)由二倍角公式算出,代入兩角和的正弦公式計算即可.【詳解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【點睛】本題主要考查了正余弦定理應(yīng)用,運用二倍角公式和兩角和的正弦公式求值,考查了學生的運算求解能力.21、(1)(2),見解析【解析】當時,分類討論,去掉絕對值,直接進行求解,即可得到答案討論兩個根、的范圍,結(jié)合一元二次方程根與系數(shù)之間的關(guān)系進行轉(zhuǎn)化求解【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采購合同的履行糾紛處理3篇
- 采購合同條款的深度解讀3篇
- 采購合同風險評估的比較研究3篇
- 采購合同框架協(xié)議的簽訂步驟3篇
- 2024年度地下車庫租賃合同包含車位使用時間限制3篇
- 2024年標準型公司物流配送服務(wù)協(xié)議版B版
- 2024年度跨境電商代理合作協(xié)議書3篇
- 2024年度展會現(xiàn)場環(huán)保設(shè)施與設(shè)備租賃服務(wù)合同3篇
- 2024年度汽車抵押貸款保證服務(wù)協(xié)議3篇
- 2024修路工程節(jié)能減排與綠色施工合同范本2篇
- DB45T 2760-2023 電子政務(wù)外網(wǎng)網(wǎng)絡(luò)技術(shù)規(guī)范
- 2025版中考物理復(fù)習課件 09 專題五 類型3 電學綜合應(yīng)用題(不含效率)(10年6考)
- 2024年度承包合同:石灰石生產(chǎn)線承包2篇
- 2024年度社區(qū)養(yǎng)老社會工作服務(wù)項目協(xié)議書3篇
- 青海省西寧市2021-2022學年八年級上學期期末歷史試題(解析版)
- 2024統(tǒng)編版七年級上冊語文期末復(fù)習:名著閱讀 練習題匯編(含答案解析)
- 人力資源規(guī)劃
- 《北京大學介紹》課件
- 夜泊牛渚懷古
- 關(guān)于家長與學生評議教師制度
- 《大學生職業(yè)生涯規(guī)劃與就業(yè)指導(dǎo)》教學教案
評論
0/150
提交評論