上海嘉定區(qū)安亭高級中學2025屆數(shù)學高三第一學期期末質(zhì)量檢測模擬試題含解析_第1頁
上海嘉定區(qū)安亭高級中學2025屆數(shù)學高三第一學期期末質(zhì)量檢測模擬試題含解析_第2頁
上海嘉定區(qū)安亭高級中學2025屆數(shù)學高三第一學期期末質(zhì)量檢測模擬試題含解析_第3頁
上海嘉定區(qū)安亭高級中學2025屆數(shù)學高三第一學期期末質(zhì)量檢測模擬試題含解析_第4頁
上海嘉定區(qū)安亭高級中學2025屆數(shù)學高三第一學期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海嘉定區(qū)安亭高級中學2025屆數(shù)學高三第一學期期末質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.如圖是國家統(tǒng)計局公布的年入境游客(單位:萬人次)的變化情況,則下列結(jié)論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數(shù)大于13340萬人次D.前3年我國入境游客萬人次數(shù)據(jù)的方差小于后3年我國入境游客萬人次數(shù)據(jù)的方差3.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.34.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.5.若,則實數(shù)的大小關(guān)系為()A. B. C. D.6.已知平面向量滿足與的夾角為,且,則實數(shù)的值為()A. B. C. D.7.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.08.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,則()A. B.C. D.9.已知函數(shù),,當時,不等式恒成立,則實數(shù)a的取值范圍為()A. B. C. D.10.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]11.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.64212.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.過動點作圓:的切線,其中為切點,若(為坐標原點),則的最小值是__________.14.已知雙曲線(,)的左,右焦點分別為,,過點的直線與雙曲線的左,右兩支分別交于,兩點,若,,則雙曲線的離心率為__________.15.已知,,且,則最小值為__________.16.設函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實數(shù)a的取值范圍是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和為,且滿足,各項均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和18.(12分)已知函數(shù),函數(shù)().(1)討論的單調(diào)性;(2)證明:當時,.(3)證明:當時,.19.(12分)在直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù),).以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為.(l)求直線的普通方程和曲線C的直角坐標方程:(2)若直線與曲線C相交于A,B兩點,且.求直線的方程.20.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.21.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(Ⅰ)解不等式;(Ⅱ)設其中為常數(shù).若方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學生的邏輯推理能力.2、D【解析】

ABD可通過統(tǒng)計圖直接分析得出結(jié)論,C可通過計算中位數(shù)判斷選項是否正確.【詳解】A.由統(tǒng)計圖可知:2014年入境游客萬人次最少,故正確;B.由統(tǒng)計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數(shù)應為與的平均數(shù),大于萬次,故正確;D.由統(tǒng)計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表信息的讀取以及對中位數(shù)和方差的理解,難度較易.處理問題的關(guān)鍵是能通過所給統(tǒng)計圖,分析出對應的信息,對學生分析問題的能力有一定要求.3、A【解析】

由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.4、B【解析】

利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現(xiàn)了數(shù)學運算、直觀想象等核心素養(yǎng).5、A【解析】

將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大?。蝗粽鏀?shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.6、D【解析】

由已知可得,結(jié)合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.7、C【解析】

集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎題.8、C【解析】

根據(jù)題意,由函數(shù)的奇偶性可得,,又由,結(jié)合函數(shù)的單調(diào)性分析可得答案.【詳解】根據(jù)題意,函數(shù)是定義在上的偶函數(shù),則,,有,又由在上單調(diào)遞增,則有,故選C.【點睛】本題主要考查函數(shù)的奇偶性與單調(diào)性的綜合應用,注意函數(shù)奇偶性的應用,屬于基礎題.9、D【解析】

由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時是單調(diào)增函數(shù).則恒成立..令,則時,單調(diào)遞減,時單調(diào)遞增.故選:D.【點睛】本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問題,考查恒成立時求解參數(shù)問題,考查學生的分析問題的能力和計算求解的能力,難度較難.10、D【解析】

設,可得,構(gòu)造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.11、A【解析】

設球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關(guān)的組合體的問題,解答本題的關(guān)鍵有兩個:(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c12、C【解析】

根據(jù)對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點睛】本題主要考查函數(shù)的對稱性的應用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解答:由圓的方程可得圓心C的坐標為(2,2),半徑等于1.由M(a,b),則|MN|2=(a?2)2+(b?2)2?12=a2+b2?4a?4b+7,|MO|2=a2+b2.由|MN|=|MO|,得a2+b2?4a?4b+7=a2+b2.整理得:4a+4b?7=0.∴a,b滿足的關(guān)系為:4a+4b?7=0.求|MN|的最小值,就是求|MO|的最小值.在直線4a+4b?7=0上取一點到原點距離最小,由“垂線段最短”得,直線OM垂直直線4a+4b?7=0,由點到直線的距離公式得:MN的最小值為:.14、【解析】

設,由雙曲線的定義得出:,由得為等腰三角形,設,根據(jù),可求出,得出,再結(jié)合焦點三角形,利用余弦定理:求出和的關(guān)系,即可得出離心率.【詳解】解:設,由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設,,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.【點睛】本題考查雙曲線的定義的應用,以及余弦定理的應用,求雙曲線離心率.15、【解析】

首先整理所給的代數(shù)式,然后結(jié)合均值不等式的結(jié)論即可求得其最小值.【詳解】,結(jié)合可知原式,且,當且僅當時等號成立.即最小值為.【點睛】在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.16、【解析】試題分析:由題意得函數(shù)在[2,上單調(diào)遞增,當時在[2,上單調(diào)遞增;當時在上單調(diào)遞增;在上單調(diào)遞減,因此實數(shù)a的取值范圍是考點:函數(shù)單調(diào)性三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由化為,利用數(shù)列的通項公式和前n項和的關(guān)系,得到是首項為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數(shù)列從開始成等差數(shù)列,,代入得是首項為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數(shù)列的通項公式和前n項和的關(guān)系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.18、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】

(1)求出的定義域,導函數(shù),對參數(shù)、分類討論得到答案.(2)設函數(shù),求導說明函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調(diào)遞增;當,時,令,得,令,得,則在上單調(diào)遞減,在上單調(diào)遞增;當,時,,則在上單調(diào)遞減;當,時,令,得,令,得,則在上單調(diào)遞增,在上單調(diào)遞減;(2)證明:設函數(shù),則.因為,所以,,則,從而在上單調(diào)遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數(shù)研究含參函數(shù)的單調(diào)性,利用導數(shù)證明不等式,屬于難題.19、(1)見解析(2)【解析】

(1)將消去參數(shù)t可得直線的普通方程,利用x=ρcosθ,可將極坐標方程轉(zhuǎn)為直角坐標方程.(2)利用直線被圓截得的弦長公式計算可得答案.【詳解】(1)由消去參數(shù)t得(),由得曲線C的直角坐標方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.【點睛】本題考查參數(shù)方程,極坐標方程與直角坐標方程之間的互化,考查直線被圓截得的弦長公式的應用,考查分析能力與計算能力,屬于基礎題.20、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數(shù)方程代入圓C的直角坐標方程,由直線參數(shù)方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據(jù)韋達定理可得結(jié)果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數(shù)方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設t1,t2是上述方程的兩實數(shù)根,所以t1+t2=3又直線l過點P,A、B兩點對應的參數(shù)分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.21、(1)見解析;(2).【解析】

(1)取的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論