版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版九年級上冊數學期末考試試題一、選擇題。(每小題只有一個正確答案)1.如圖,我國傳統文化中的“福祿壽喜”圖由四個圖案構成,這四個圖案中是中心對稱圖形的是()A.B.C.D.2.如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點A按順時針方向旋轉到△AB1C1的位置,使得點C、A、B1在同一條直線上,那么旋轉角等于()A.35° B.50° C.125° D.90°3.如圖,下面圖形及各個選項均是由邊長為1的小方格組成的網格,三角形的頂點均在小方格的頂點上,下列四個選項中哪一個陰影部分的三角形與已知相似.()A. B. C. D.4.如圖,AB是⊙O的直徑,C是⊙O上一點(A、B除外),∠BOD=44°,則∠C的度數是()A.44° B.22° C.46° D.36°5.某地質學家預測:在未來的20年內,F市發(fā)生地震的概率是.以下敘述正確的是()A.從現在起經過13至14年F市將會發(fā)生一次地震B(yǎng).可以確定F市在未來20年內將會發(fā)生一次地震C.未來20年內,F市發(fā)生地震的可能性比沒有發(fā)生地震的可能性大D.我們不能判斷未來會發(fā)生什么事,因此沒有人可以確定何時會有地震發(fā)生6.方程的根是()A. B. C. D.7.下列對拋物線y=-2(x-1)2+3性質的描寫中,正確的是(
)A.開口向上B.對稱軸是直線x=1C.頂點坐標是(-1,3) D.函數y有最小值8.反比例函數y=(k≠0)的圖象經過點(2,-4),若點(4,n)在反比例函數的圖象上,則n等于()A.﹣8 B.﹣4 C.﹣ D.﹣29.如圖,點E、F分別為正方形ABCD的邊BC、CD上一點,AC、BD交于點O,且∠EAF=45°,AE,AF分別交對角線BD于點M,N,則有以下結論:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上結論中,正確的個數有()個.A.1 B.2 C.3 D.410.已知:如圖,菱形ABCD的周長為20cm,對角線AC=8cm,直線l從點A出發(fā),以1cm/s的速度沿AC向右運動,直到過點C為止在運動過程中,直線l始終垂直于AC,若平移過程中直線l掃過的面積為S(cm2),直線l的運動時間為t(s),則下列最能反映S與t之間函數關系的圖象是()A.B.C.D.二、填空題11.一個不透明的袋子中裝有黑、白小球各兩個,這些小球除顏色外無其他差別,從袋子中隨機摸出一個小球后,放回并搖勻,再隨機摸出一個小球,則兩次摸出的小球都是白球的概率為_______.12.已知兩個相似三角形與的相似比為3.則與的面積之比為________.13.關于的一元二次方程有兩個不相等的實數根,則的取值范圍是__________.14.如圖所示,四邊形ABCD是邊長為3的正方形,點E在BC上,BE=1,△ABE繞點A逆時針旋轉后得到△ADF,則FE的長等于____________.15.如圖,點O是半徑為3的圓形紙片的圓心,將這個圓形紙片按下列順序折疊,使弧AB和弧BC都經過圓心O,則陰影部分的面積為______16.如圖,A是反比例函數圖象上的一點,點B、D在軸正半軸上,是關于點D的位似圖形,且與的位似比是1:3,的面積為1,則的值為____.17.二次函數(a<0)圖象與x軸的交點A、B的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結論:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函數圖象上的兩點,則y1>y2;③a=﹣c;④若△ABC是等腰三角形,則b=﹣.其中正確的有______(請將結論正確的序號全部填上)三、解答題18.“十一”黃金周期間,西安旅行社推出了“西安紅色游”項目團購活動,收費標準如下:若總人數不超過25人,每人收費1000元;若總人數超過25人,每增加1人,每人收費降低20元(每人收費不低于700元),設有x人參加這一旅游項目的團購活動.(1)當x=35時,每人的費用為______元.(2)某社區(qū)居民組團參加該活動,共支付旅游費用27000元,求該社區(qū)參加此次“西安紅色游”的人數.19.已知△ABC為等邊三角形,M為三角形外任意一點,把△ABM繞著點A按逆時針方向旋轉60°到△CAN的位置.(1)如圖①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度數和求AM的長.(2)如圖②,若∠BMC=n°,試寫出AM、BM、CM之間的數量關系,并證明你的猜想.20.如圖,在平行四邊形ABCD中,CE是∠DCB的角平分線,且交AB于點E,DB與CE相交于點O,(1)求證:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.21.隨著經濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識的普及情況,隨機調查了部分學生,調查結果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調查結果繪制成下面兩個統計圖.(1)本次調查的學生共有人,估計該校1200名學生中“不了解”的人數是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.22.如圖,在平面直角坐標系中,直線AB與函數y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.(1)求m,k,n的值;(2)求△ABC的面積.23.小明投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現:每月的銷售量y(件)與銷售單價x(元/件)之間的關系可近似地看作一次函數y=-10x+500,在銷售過程中銷售單價不低于成本價,而每件的利潤不高于成本價的60%.(1)設小明每月獲得利潤為w(元),求每月獲得利潤w(元)與銷售單價x(元/件)之間的函數表達式,并確定自變量x的取值范圍;(2)當銷售單價定為多少元/件時,每月可獲得最大利潤?每月的最大利潤是多少?24.已知拋物線y=﹣x2+bx﹣c的部分圖象如圖.(1)求b、c的值;(2)分別求出拋物線的對稱軸和y的最大值.25.如圖,等邊△ABC內接于⊙O,P是上任一點(點P不與點A、B重合),連AP、BP,過點C作CM∥BP交PA的延長線于點M.(1)填空:∠APC=度,∠BPC=度;(2)求證:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面積.參考答案1.B【解析】根據中心對稱圖形的概念逐一判斷即可.【詳解】A.不是中心對稱圖形,故該選項不符合題意,B.是中心對稱圖形,符合題意,C.不是中心對稱圖形,故該選項不符合題意,D.不是中心對稱圖形,故該選項不符合題意,故選:B.【點睛】本題考查中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2.C【分析】根據直角三角形兩銳角互余求出∠BAC,然后求出∠BAB1,再根據旋轉的性質對應邊的夾角∠BAB1即為旋轉角.【詳解】∵∠B=35°,∠C=90°,∴∠BAC=90°?∠B=90°?35°=55°,∵點C、A、B1在同一條直線上,∴∠BAB1=180°?∠BAC=180°?55°=125°,∴旋轉角等于125°.故選C.【點睛】本題考查了旋轉的性質,直角三角形兩銳角互余的性質,熟練掌握旋轉的性質,明確對應邊的夾角即為旋轉角是解題的關鍵.3.A【分析】本題主要應用兩三角形相似判定定理,三邊對應成比例,分別對各選項進行分析即可得出答案.【詳解】解:已知給出的三角形的各邊分別為1、、,只有選項A的各邊為、2、與它的各邊對應成比例.故選:A.【點睛】本題考查三角形相似判定定理以及勾股定理,是基礎知識要熟練掌握.4.B【分析】根據圓周角定理解答即可.【詳解】解,∵∠BOD=44°,∴∠C=∠BOD=22°,故選B.【點睛】本題考查了圓周角定理,屬于基本題型,熟練掌握圓周角定理是關鍵.5.C【分析】根據概率的意義,可知發(fā)生地震的概率是,說明發(fā)生地震的可能性大于不發(fā)生地震的可能性,從而可以解答本題.【詳解】∵某地質學家預測:在未來的20年內,F市發(fā)生地震的概率是,∴未來20年內,F市發(fā)生地震的可能性比沒有發(fā)生地震的可能性大,故選C.【點睛】本題主要考查概率的意義,發(fā)生地震的概率是,說明發(fā)生地震的可能性大于不發(fā)生地政的可能性,這是解答本題的關鍵.6.D【分析】根據一元二次方程的解法求解即可;【詳解】,或,解得或;故答案選D.【點睛】本題主要考查了一元二次方程的求解,準確計算是解題的關鍵.7.B【分析】由拋物線的解析式可求得開口方向、對稱軸及頂點坐標,再逐一進行判斷即可.【詳解】解:A、∵?2<0,∴拋物線的開口向下,故A錯誤,不符合題意;B、拋物線的對稱軸為:x=1,故B正確,符合題意;C、拋物線的頂點為(1,3),故C錯誤,不符合題意;D、因為開口向下,故該函數有最大值,故D錯誤,不符合題意.故答案為:B.【點睛】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x?h)2+k中,頂點坐標為(h,k),對稱軸為x=h.8.D【分析】利用反比例函數圖象上點的坐標特征得到4n=2×(-4),然后解關于n的方程即可.【詳解】∵點(2,-4)和點(4,n)在反比例函數y=的圖象上,∴4n=2×(-4),∴n=-2.故選D.【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.9.D【解析】【分析】如圖,把△ADF繞點A順時針旋轉90°得到△ABH,由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF,由已知條件得到∠EAH=∠EAF=45°,根據全等三角形的性質得到EH=EF,所以∠ANM=∠AEB,則可求得②正確;根據三角形的外角的性質得到①正確;根據相似三角形的判定定理得到△OAM∽△DAF,故③正確;根據相似三角形的性質得到∠AEN=∠ABD=45°,推出△AEN是等腰直角三角形,根據勾股定理得到AE=AN,再根據相似三角形的性質得到EF=MN,于是得到S△AEF=2S△AMN.故④正確.【詳解】如圖,把△ADF繞點A順時針旋轉90°得到△ABH由旋轉的性質得,BH=DF,AH=AF,∠BAH=∠DAF∵∠EAF=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°∴∠EAH=∠EAF=45°在△AEF和△AEH中∴△AEF≌△AEH(SAS)∴EH=EF∴∠AEB=∠AEF∴BE+BH=BE+DF=EF,故②正確∵∠ANM=∠ADB+∠DAN=45°+∠DAN,∠AEB=90°﹣∠BAE=90°﹣(∠HAE﹣∠BAH)=90°﹣(45°﹣∠BAH)=45°+∠BAH∴∠ANM=∠AEB∴∠ANM=∠AEB=∠ANM;故③正確,∵AC⊥BD∴∠AOM=∠ADF=90°∵∠MAO=45°﹣∠NAO,∠DAF=45°﹣∠NAO∴△OAM∽△DAF故①正確連接NE,∵∠MAN=∠MBE=45°,∠AMN=∠BME∴△AMN∽△BME∴∴∵∠AMB=∠EMN∴△AMB∽△NME∴∠AEN=∠ABD=45°∵∠EAN=45°∴∠NAE=NEA=45°∴△AEN是等腰直角三角形∴AE=∵△AMN∽△BME,△AFE∽△BME∴△AMN∽△AFE∴∴∴∴S△AFE=2S△AMN故④正確故選D.【點睛】此題考查相似三角形全等三角形的綜合應用,熟練掌握相似三角形,全等三角形的判定定理是解決此類題的關鍵.10.B【分析】先由勾股定理計算出BO,OD,進而求出△AMN的面積.從而就可以得出0≤t≤4時的函數解析式;再得出當4<t≤8時的函數解析式.【詳解】解:連接BD交AC于點O,令直線l與AD或CD交于點N,與AB或BC交于點M.∵菱形ABCD的周長為20cm,∴AD=5cm.∵AC=8cm,∴AO=OC=4cm,由勾股定理得OD=OB==3cm,分兩種情況:(1)當0≤t≤4時,如圖1,MN∥BD,△AMN∽△ABD,∴,,∴MN=t,∴S=MN·AE=t·t=t2函數圖象是開口向上,對稱軸為y軸且位于對稱軸右側的拋物線的一部分;(2)當4<t≤8時,如圖2,MN∥BD,∴△CMN∽△CBD,∴,,MN=t+12,∴S=S菱形ABCD-S△CMN==t2+12t-24=(t-8)2+24.函數圖象是開口向下,對稱軸為直線t=8且位于對稱軸左側的拋物線的一部分.故選B.【點睛】本題是動點函數圖象題型,當某部分的解析式好寫時,可以寫出來,結合排除法,答案還是不難得到的.11.【詳解】試題分析:列表得:
黑1
黑2
白1
白2
黑1
黑1黑1
黑1黑2
黑1白1
黑1白2
黑2
黑2黑1
黑2黑2
黑2白1
黑2白2
白1
白1黑1
白1黑2
白1白1
白1白2
白2
白2黑1
白2黑2
白2白1
白2白2
共有16種等可能結果總數,其中兩次摸出是白球有4種.∴P(兩次摸出是白球)=.考點:概率.12.9【分析】根據相似三角形的面積比等于相似比的平方,即可求得答案.【詳解】解:∵兩個相似三角形的相似比為3,
∴這兩個三角形的面積之比為9.
故答案為:9.【點睛】此題考查了相似三角形的性質.注意熟記定理是解此題的關鍵.13.【分析】根據根的判別式即可求出答案;【詳解】解:由題意可知:解得:故答案為:【點睛】本題考查一元二次方程根的判別式,解題的關鍵是熟練掌握一元二次方程根的判別式并應用.14.2【分析】由題意可得EC=2,CF=4,根據勾股定理可求EF的長.【詳解】∵四邊形ABCD是正方形,∴AB=BC=CD=3.∵△ABE繞點A逆時針旋轉后得到△ADF,∴DF=BE=1,∴CF=CD+DF=3+1=4,CE=BC﹣BE=3﹣1=2.在Rt△EFC中,EF.【點睛】本題考查旋轉的性質,正方形的性質,勾股定理,熟練運用這些性質解決問題是本題的關鍵.15.3π【分析】作OD⊥AB于點D,連接AO,BO,CO,求出∠OAD=30°,得到∠AOB=120°,進而求得∠AOC=120°,從而得到陰影面積為圓面積的,再利用面積公式求解.【詳解】如圖,作OD⊥AB于點D,連接AO,BO,CO,∵OD=AO,∴∠OAD=30°,∴∠AOB=2∠AOD=120°,同理∠BOC=120°,∴∠AOC=120°,∴陰影部分的面積=S扇形AOC==3π.故答案為:3π.【點睛】本題考查了學生轉化面積的能力,將不規(guī)則的面積轉化為規(guī)則的面積是本題的解題關鍵.16.8【分析】根據△ABD是△COD關于點D的位似圖形,且△ABD與△COD的位似比是1:3,得出,進而得出假設BD=x,AE=4x,D0=3x,AB=y,根據△ABD的面積為1,求出xy=2即可得出答案.【詳解】過A作AE⊥x軸,∵△ABD是△COD關于點D的位似圖形,且△ABD與△COD的位似是1:3,∴,∴OE=AB,∴,設BD=x,AB=y∴DO=3x,AE=4x,C0=3y,∵△ABD的面積為1,∴xy=1,∴xy=2,∴AB?AE=4xy=8,故答案為:8.【點睛】此題考查位似變換,反比例函數系數k的幾何意義,待定系數法求反比例函數解析式,解題關鍵在于作輔助線.17.①③.【詳解】解:①∵a<0,∴拋物線開口向下,∵圖象與x軸的交點A、B的橫坐標分別為﹣3,1,∴當x=﹣4時,y<0,即16a﹣4b+c<0;故①正確;②∵圖象與x軸的交點A、B的橫坐標分別為﹣3,1,∴拋物線的對稱軸是:x=﹣1,∵P(﹣5,y1),Q(,y2),﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,由對稱性得:(﹣4.5,y3)與Q(,y2)是對稱點,∴則y1<y2;故②不正確;③∵=﹣1,∴b=2a,當x=1時,y=0,即a+b+c=0,3a+c=0,a=﹣c;④要使△ACB為等腰三角形,則必須保證AB=BC=4或AB=AC=4或AC=BC,當AB=BC=4時,∵AO=1,△BOC為直角三角形,又∵OC的長即為|c|,∴c2=16﹣9=7,∵由拋物線與y軸的交點在y軸的正半軸上,∴c=,與b=2a、a+b+c=0聯立組成解方程組,解得b=﹣;同理當AB=AC=4時,∵AO=1,△AOC為直角三角形,又∵OC的長即為|c|,∴c2=16﹣1=15,∵由拋物線與y軸的交點在y軸的正半軸上,∴c=,與b=2a、a+b+c=0聯立組成解方程組,解得b=﹣;同理當AC=BC時,在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程無實數解.經解方程組可知有兩個b值滿足條件.故⑤錯誤.綜上所述,正確的結論是①③.故答案為①③.點睛:本題考查了等腰三角形的判定、方程組的解、拋物線與坐標軸的交點、二次函數的圖象與系數的關系:當a<0,拋物線開口向下;拋物線的對稱軸為直線x=;拋物線與y軸的交點坐標為(0,c),與x軸的交點為(x1,0)、(x2,0).18.(1)800;(2)該社區(qū)共有30人參加此次“西安紅色游”【分析】(1)當x=35時,根據“若總人數不超過25人,每人收費1000元;若總人數超過25人,每增加1人,每人收費降低20元,(但每人收費不低于700元)”可得每人的費用為1000-(35-25)×20=800元;(2)該社區(qū)共支付旅游費用27000元,顯然人數超過了25人,設該社區(qū)共有x人參加此次“西安紅色游”,則人均費用為[1000-20(x-25)]元,根據旅游費=人均費用×人數,列一元二次方程求x的值,結果要滿足上述不等式.【詳解】解:(1)當x=35時,每人的費用為1000-(35-25)×20=800(元).(2)設該社區(qū)共有x人參加此次“西安紅色游”,∵1000×25=25000元<27000元,∴x>25.由題意,得x[1000-20(x-25)]=27000,整理,得x2-75x+1350=0,解得x1=30,x2=45.檢驗:當x=30時,人均旅游費用為1000-20×(30-25)=900元>700元,符合題意;當x=45時,人均旅游費用為1000-20×(45-25)=600元<700元,不合題意,舍去,∴x=30.答:該社區(qū)共有30人參加此次“西安紅色游”.【點睛】本題考查了一元二次方程的應用.關鍵是設旅游人數,表示人均費用,根據旅游費=人均費用×人數,列一元二次方程.19.(1)60°,5;(2)AM=BM+CM【分析】(1)由旋轉性質可得△ABM≌△CAN,根據全等三角形的性質和等邊三角形的判定可得△AMN是等邊三角形,繼而求出∠AMN=60°,根據∠BMC=120°,∠AMN=∠AMC=60°,繼而求出∠AMB;AM=MN=MC+CN.(2)【詳解】解∵把△ABM繞著點A按逆時針方向旋轉60到△ACN的位置,所以∠NAM=60°,因為AN=AM,所以△AMN是等邊三角形,所以∠AMN=60°,因為∠BMC=120°,∠AMN=∠AMC=60°,所以∠AMB=∠BMG-∠AMG=120°-60°=60°,∵把△ABM繞著點A按逆時針方向旋轉60°到△ACN的位置,所以△ABM≌△CAN,所以BM=CN=2,△AMN是等邊三角形AM=MN=MC+CN=3+2=5,故答案為60°,5;(2)AM=BM+CM,∵把△ABM繞著點A按逆時針方向旋轉60°到△ACN的位置,所以△ABM≌△CAN,因為AN=AM,所以△AMN是等邊三角形,所以∠AMN=60°,因為∠BMC=n°,∠AMN=∠AMC=60°,所以∠MNA=∠MAN,所以MA=MN,所以AM=BM+CM.【點睛】本題主要考的三角形的旋轉及等邊三角形的應用以及三角形全等性質的使用,解決本題的關鍵是要熟練掌握旋轉性質和全等三角形的性質.20.(1)證明見解析(2)【解析】試題分析:(1)欲證明△EBC是等腰三角形,只需推知BC=BE即可,可以由∠2=∠3得到:BC=BE;(2)通過相似三角形△COD∽△EOB的對應邊成比例得到,然后利用分式的性質可以求得.解:(1)∵四邊形ABCD是平行四邊形,∴CD∥AB,∴∠1=∠2.∵CE平分∠BCD,∴∠1=∠3,∴∠2=∠3,∴BC=BE,∴△EBC是等腰三角形;(2)∵∠1=∠2,∠4=∠5,∴△COD∽△EOB,∴=.∵平行四邊形ABCD,∴CD=AB=7.∵BE=BC=5,∴==,∴=.點睛:本題考查了平行四邊形的性質,相似三角形的判定與性質以及等腰三角形的判定.在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形;在運用三角形相似的性質時主要利用相似比計算相應線段的長.21.(1)50,360;(2).【詳解】試題分析:(1)根據圖示,可由非常了解的人數和所占的百分比直接求解總人數,然后根據求出不了解的百分比估計即可;(2)根據題意畫出樹狀圖,然后求出總可能和“一男一女”的可能,再根據概率的意義求解即可.試題解析:(1)由餅圖可知“非常了解”為8%,由柱形圖可知(條形圖中可知)“非常了解”為4人,故本次調查的學生有(人)由餅圖可知:“不了解”的概率為,故1200名學生中“不了解”的人數為(人)(2)樹狀圖:由樹狀圖可知共有12種結果,抽到1男1女分別為共8種.∴考點:1、扇形統計圖,2、條形統計圖,3、概率22.(1)m=4,k=8,n=4;(2)△ABC的面積為4.【詳解】試題分析:(1)由點A的縱坐標為2知OC=2,由OD=OC知OD=1、CD=3,根據△ACD的面積為6求得m=4,將A的坐標代入函數解析式求得k,將點B坐標代入函數解析式求得n;(2)作BE⊥AC,得BE=2,根據三角形面積公式求解可得.試題解析:(1)∵點A的坐標為(m,2),AC平行于x軸,∴OC=2,AC⊥y軸,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面積為6,∴CD?AC=6,∴AC=4,即m=4,則點A的坐標為(4,2),將其代入y=可得k=8,∵點B(2,n)在y=的圖象上,∴n=4;(2)如圖,過點B作BE⊥AC于點E,則BE=2,∴S△ABC=AC?BE=×4×2=4,即△ABC的面積為4.考點:反比例函數與一次函數的交點問題.23.(1)w=-10x2+700x-10000(20≤x≤32);(2)當銷售單價定為32元/件時,每月可獲得最大利潤,最大利潤是2160元.【詳解】分析:(1)由題意得,每月銷售量與銷售單價之間的關系可近似看作一次函數,利潤=(定價-進價)×銷售量,從而列出關系式;
(2)首先確定二次函數的對稱軸,然后根據其增減性確定最大利潤即可;詳解:(1)由題意,得:w=(x-20)?y=(x-20)?(-10x+500)=-10x2+700x-10000,即w=-10x2+700x-10000(20≤x≤32).(2)w=-10x2+700x-10000=-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)人才資源代理協議書
- 2025年商業(yè)承兌匯票質押合同
- 2025年度特種車輛買賣及售后服務協議3篇
- 《稅款征收基本制度》課件
- 二零二五年度2025版木材碳排放權交易合同2篇
- 2025版門窗產品進出口貿易合同4篇
- 二零二五年度商業(yè)步行街鋪面租賃及品牌管理合同
- 二零二五版行政合同行政主體特權與公眾權益保護協議3篇
- 二零二五年度餐飲店兩人合伙經營風險承擔協議
- 二零二五年度家居用品貼牌設計與市場拓展協議
- 廣西桂林市2023-2024學年高二上學期期末考試物理試卷
- 財務指標與財務管理
- 2023-2024學年西安市高二數學第一學期期末考試卷附答案解析
- 部編版二年級下冊道德與法治第三單元《綠色小衛(wèi)士》全部教案
- 【京東倉庫出庫作業(yè)優(yōu)化設計13000字(論文)】
- 保安春節(jié)安全生產培訓
- 初一語文上冊基礎知識訓練及答案(5篇)
- 勞務合同樣本下載
- 血液透析水處理系統演示
- GB/T 27030-2006合格評定第三方符合性標志的通用要求
- GB/T 13663.2-2018給水用聚乙烯(PE)管道系統第2部分:管材
評論
0/150
提交評論