主要內(nèi)容:本文通過對比分析,解析函數(shù)y=ax+eq\f(b,cx)當(dāng)a,b,c的系數(shù)符號不同時,并舉例以四個函數(shù)y?=84x+eq\f(93,163x),y?=84x-eq\f(93,163x),y?=-84x+eq\f(93,163x),y4=-84x-eq\f(93,163x),說明系數(shù)符號變化與函數(shù)性質(zhì)的關(guān)系,簡要畫出函數(shù)在同一個坐標系下的圖像。☆.函數(shù)的定義域分析根據(jù)y?=84x+eq\f(93,163x),y?=84x-eq\f(93,163x),y?=-84x+eq\f(93,163x),y4=-84x-eq\f(93,163x)函數(shù)特征,可知均含有分式,故要求分母不為0,所以4個函數(shù)的定義域相同,定義域均為:(-∞,0)∪(0,+∞)。☆.函數(shù)的單調(diào)性分析由于4個函數(shù)均是由一個正比例函數(shù)和一個反比例函數(shù)的和差函數(shù),可以根據(jù)兩個函數(shù)的單調(diào)性綜合分析和差函數(shù)的單調(diào)性。1.對于函數(shù)y?=84x-eq\f(93,163x),是由正比例增函數(shù)和反比例減函數(shù)的差,所以相當(dāng)于兩個增函數(shù)的和,故函數(shù)y2整體為增函數(shù)。2.對于函數(shù)y?=-84x+eq\f(93,163x),是由正比例減函數(shù)和反比例減函數(shù)的和,所以相當(dāng)于兩個減函數(shù)的和,故函數(shù)y3整體為減函數(shù)。3.對于函數(shù)y?=84x+eq\f(93,163x),y4=-84x-eq\f(93,163x)前后兩個函數(shù)的單調(diào)性不一致,不能簡單通過上述方法解析,但可以使用導(dǎo)數(shù)來分析單調(diào)性?!?導(dǎo)數(shù)分析函數(shù)的單調(diào)性步驟1.函數(shù)y?=84x+eq\f(93,163x),求函數(shù)的一階導(dǎo)數(shù),有:eq\f(dy,dx)=84-eq\f(93,163x2)=eq\f(84*163x2-93,163x2),令eq\f(dy,dx)=0,即:84*163x2-93=0,所以x=±eq\f(1,2282)eq\r(35371)≈±0.08,結(jié)合函數(shù)的定義域,并根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性有:(1)當(dāng)x∈(-∞,-eq\f(1,2282)eq\r(35371))∪(eq\f(1,2282)eq\r(35371),+∞)時,eq\f(dy,dx)>0,函數(shù)為增函數(shù);(2)當(dāng)x∈[-eq\f(1,2282)eq\r(35371),0)∪(0,eq\f(1,2282)eq\r(35371)]時,eq\f(dy,dx)<0,函數(shù)為減函數(shù)。2.函數(shù)y4=-84x-eq\f(93,163x),是y1的相反函數(shù),故單調(diào)性與之相反。同理,結(jié)合函數(shù)的定義域,并根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性有:(1)當(dāng)x∈(-∞,-eq\f(1,2282)eq\r(35371))∪(eq\f(1,2282)eq\r(35371),+∞)時,eq\f(dy,dx)<0,函數(shù)為減函數(shù);(2)當(dāng)x∈[-eq\f(1,2282)eq\r(35371),0)∪(0,eq\f(1,2282)eq\r(35371)]時,eq\f(dy,dx)>0,為增函數(shù)。☆.函數(shù)的凸凹性1.函數(shù)y?=84x+eq\f(93,163x)有:eq\f(dy,dx)=84-eq\f(93,163x2),則:eq\f(d2y,dx2)=0+eq\f(2*93,163x3)=eq\f(2*93,163x3),可知與x的符號成正向關(guān)系,所以:(1)當(dāng)x∈(-∞,0)時,eq\f(d2y,dx2)<0,函數(shù)為凸函數(shù);(2)當(dāng)x∈(0,+∞)時,eq\f(d2y,dx2)>0,函數(shù)為凹函數(shù)。2.函數(shù)y?=84x-eq\f(93,163x)有:eq\f(dy,dx)=84+eq\f(93,163x2),則:eq\f(d2y,dx2)=0-eq\f(2*93,163x3)=-eq\f(2*93,163x3),可知與x的符號有關(guān)系且相反,所以:(1)當(dāng)x∈(-∞,0)時,eq\f(d2y,dx2)>0,函數(shù)為凹函數(shù);(2)當(dāng)x∈(0,+∞)時,eq\f(d2y,dx2)<0,函數(shù)為凸函數(shù)。3.y?=-84x+eq\f(93,163x)有:eq\f(dy,dx)=-84-eq\f(93,163x2),則:eq\f(d2y,dx2)=0+eq\f(2*93,163x3)=eq\f(2*93,163x3),可知與x的符號成正向關(guān)系,所以:(1)當(dāng)x∈(-∞,0)時,eq\f(d2y,dx2)<0,函數(shù)為凸函數(shù);(2)當(dāng)x∈(0,+∞)時,eq\f(d2y,dx2)>0,函數(shù)為凹函數(shù)。4.y4=-84x-eq\f(93,163x)有:eq\f(dy,dx)=-84+eq\f(93,163x2),則:eq\f(d2y,dx2)=0-eq\f(2*93,163x3)=-eq\f(2*93,163x3),可知與x的符號有關(guān)系且相反,所以:(1)當(dāng)x∈(-∞,0)時,eq\f(d2y,dx2)>0,函數(shù)為凹函數(shù);(2)當(dāng)x∈(0,+∞)時,eq\f(d2y,dx2)<0,函數(shù)為凸函數(shù)。.函數(shù)的極限eq\s(lim,x→-∞)84x+eq\f(93,163x)=-∞,eq\s(lim,x→0-)84x+eq\f(93,163x)=-∞,eq\s(lim,x→0+)84x+eq\f(93,163x)=+∞,eq\s(lim,x→+∞)84x+eq\f(93,163x)=+∞。eq\s(lim,x→-∞)84x-eq\f(93,163x)=-∞,eq\s(lim,x→0-)84x-eq\f(93,163x)=+∞,eq\s(lim,x→0+)84x-eq\f(93,163x)=-∞,eq\s(lim,x→+∞)84x-eq\f(93,163x)=+∞,eq\s(lim,x→-∞)-84x+eq\f(93,163x)=+∞,eq\s(lim,x→0-)-84x+eq\f(93,163x)=-∞,eq\s(lim,x→0+)-84x+eq\f(93,163x)=+∞,eq\s(lim,x→+∞)-84x+eq\f(93,163x)=-∞。eq\s(lim,x→-∞)-84x-eq\f(93,163x)=+∞,eq\s(lim,x→0-)-84x-eq\f(93,163x)=-∞eq\s(lim,x→0+)-84x-eq\f(93,163x)=-∞,eq\s(lim,x→+∞)-84x-eq\f(93,163x)=+∞☆.函數(shù)的奇偶性按照奇偶性判斷方法,可知四個函數(shù)y?=84x+eq\f(93,163x),y?=84x-eq\f(93,163x),y?=-84x+eq\f(93,163x),y4=-84x-eq\f(93,163x),均為奇函數(shù)。所以,圖像關(guān)于原點對稱,本處以y?介紹奇偶性判斷步驟?!遞(x)=-84x+eq\f(93,163x)∴f(-x)=-84*(-x)+eq\f(93,163*(-x))=84x-eq\f(93,163x)=-[-84x+eq\f(93,163x)]=-f(x).即:f(-x)=-f(x),所以函數(shù)為奇函數(shù),關(guān)于原點對稱?!?函數(shù)的五點圖x(<0)-0.12-0.10-0.08-0.06-0.0384x+eq\f(93,163x)-14.83-14.11-13.85-14.55-21.5484x-eq\f(93,163x)-5.33-2.690.414.4716.50-84x+eq\f(93,163x)5.332.69-0.41-4.47-16.50-84x-eq\f(93,163x)14.8314.1113.8514.5521.54x(>0)0.030.060.080.100.1284x+eq\f(93,163x)21.5414.5513.8514.1114.8384x-eq\f(93,163x)-16.50-4.47-0.412.695.33-84x+eq\f(93,163x)16.504.470.41-2.69-5.33-84x-eq\f(93,163x)-21.54-14.55-13.85-14.11-14.83☆.函數(shù)的圖像示意圖四個函數(shù)y?=84x+eq\f(93,163x),y?=84x-eq\f(93,163x),y?=-84x+eq\f(93,163x),y4=-84x-eq\f(93,163x)在同一個坐標系下示意圖如下所示。其中:紅色曲線表示y?=84x+eq\f(93,163x)圖像;綠色曲線表示y?=84x-eq\f(93,163x)圖像;紫色曲線表示y?=-84x+eq\f(93,163x)圖像;黑色曲線表示y4=-84x-eq\f(93,163x)圖像。yy4=-84x-eq\f(93,163x)y?=84x+eq\f(93,163x)y?=-84x+eq\f(93,163x)y?=84x-eq\f(93,163x)y?=-84x+eq\f(93,163x) xy?=84x+eq\f(93,163x)y4=-84x-eq\f(93,163x)☆.主要特性歸納1.函數(shù)相反性:函數(shù)y?=84x+eq\f(93,163x)和函數(shù)y4=-84x-eq\f(93,163x)在同一個x處的y值互為相反數(shù);函數(shù)y?=84x-eq\f(93,163x)和函數(shù)y?=-84x+eq\f(93,163x)也在同一個x處的y值互為相反數(shù)。2.經(jīng)過的象限:函數(shù)y?=84x+eq\f(93,163x)經(jīng)過第一和第三象限,函數(shù)y4=-84x-eq\f(93,163x)則經(jīng)過第二、第三象限;函數(shù)y?=84x-eq\f(93,163x)和函數(shù)y?=-84x+eq\f(93,163x)四個象限均經(jīng)過。3.曲線的交點:函數(shù)y?=84x+eq\f(93,163x)和函數(shù)y4=-84x-eq\f(93,163x)分別同另外3條曲線均沒有交點;曲線方程y?=84x-eq\f(93,163x)和函數(shù)y?=-84x+eq\f(93,163x)有公共交點,且有兩個交點,交點在x軸上,并互為相反數(shù)。4.坐標軸交點:函數(shù)y?=84x+eq\f(
評論
0/150
提交評論