甘肅省慶陽市寧縣中2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析_第1頁
甘肅省慶陽市寧縣中2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析_第2頁
甘肅省慶陽市寧縣中2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析_第3頁
甘肅省慶陽市寧縣中2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析_第4頁
甘肅省慶陽市寧縣中2025屆高二上數(shù)學期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

甘肅省慶陽市寧縣中2025屆高二上數(shù)學期末監(jiān)測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在定義域內(nèi)單調遞減,則實數(shù)的取值范圍是()A. B.C. D.2.某地區(qū)高中分三類,A類學校共有學生2000人,B類學校共有學生3000人,C類學校共有學生4000人,若采取分層抽樣的方法抽取900人,則A類學校中的學生甲被抽到的概率()A. B.C. D.3.由下面的條件一定能得出為銳角三角形的是()A. B.C. D.4.曲線在點處的切線方程是A. B.C. D.5.某市2016年至2020年新能源汽車年銷量y(單位:百臺)與年份代號x的數(shù)據(jù)如下表:年份20162017201820192020年份代號x01234年銷量y1015m3035若根據(jù)表中的數(shù)據(jù)用最小二乘法求得y關于x的回歸直線方程為,則表中m的值為()A.22 B.20C.30 D.32.56.已知等差數(shù)列的前項和為,若,,則()A. B.C. D.7.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.28.已知雙曲線左右焦點為,,過的直線與雙曲線的右支交于P,Q兩點,且,若為以Q為頂角的等腰三角形,則雙曲線的離心率為()A. B.C. D.9.一動圓與圓外切,而與圓內(nèi)切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支10.下列雙曲線中,焦點在軸上且漸近線方程為的是A. B.C. D.11.某家大型超市近10天的日客流量(單位:千人次)分別為:2.5、2.8、4.4、3.6.下列圖形中不利于描述這些數(shù)據(jù)的是()A.散點圖 B.條形圖C.莖葉圖 D.扇形圖12.復數(shù),且z在復平面內(nèi)對應的點在第二象限,則實數(shù)m的值可以為()A.2 B.C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.過點且與直線垂直的直線方程為______14.已知函數(shù),則曲線在點處的切線方程為___________15.幾位大學生響應國家創(chuàng)業(yè)號召,開發(fā)了一款面向中學生的應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”活動.這款軟件的激活碼為下面數(shù)學題的答案:記集合…,…,例如:,,若將集合的各個元素之和設為該軟件的激活碼,則該激活碼應為________.16.已知雙曲線兩焦點之間的距離為4,則雙曲線的漸近線方程是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(e為自然對數(shù)的底數(shù)),(),.(1)若直線與函數(shù),的圖象都相切,求a的值;(2)若方程有兩個不同的實數(shù)解,求a的取值范圍.18.(12分)已知兩個定點,,動點滿足,設動點的軌跡為曲線,直線:(1)求曲線的軌跡方程;(2)若與曲線交于不同的、兩點,且(為坐標原點),求直線的斜率;19.(12分)在平面直角坐標系中,動點到點的距離等于點到直線的距離.(1)求動點的軌跡方程;(2)記動點的軌跡為曲線,過點的直線與曲線交于兩點,在軸上是否存在一點,使若存在,求出點的坐標;若不存在,請說明理由.20.(12分)已知拋物線C:y2=2px(p>0)的焦點為F,P(5,a)為拋物線C上一點,且|PF|=8(1)求拋物線C的方程;(2)過點F的直線l與拋物線C交于A,B兩點,以線段AB為直徑的圓過Q(0,﹣3),求直線l的方程21.(12分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側面積;(2)求平面SCD與平面SAB的夾角的余弦值.22.(10分)已知命題p:實數(shù)x滿足;命題q:實數(shù)x滿足.若p是q的必要條件,求實數(shù)a的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題意轉化為,恒成立,參變分離后轉化為,求函數(shù)的最大值,即可求解.【詳解】函數(shù)的定義域是,,若函數(shù)在定義域內(nèi)單調遞減,即在恒成立,所以,恒成立,即設,,當時,函數(shù)取得最大值1,所以.故選:D2、D【解析】利用抽樣的性質求解【詳解】所有學生數(shù)為,所以所求概率為.故選:D3、D【解析】對于A,兩邊平方得,由得,即為鈍角;對于B,由正弦定理求出,進而求出,可得結果;對于C,根據(jù)平方關系將余弦化為正弦,用正弦定理可將角轉化為邊,進而可得的值,從而作出判斷;對于D,由可得,推出,,,故可知三個內(nèi)角均為銳角【詳解】解:對于A,由,兩邊平方整理得,,因為,所以,所以,所以,所以為鈍角三角形,故A不正確;對于B,由,得,所以,因為,所以,所以或,所以或,所以為直角三角形或鈍角三角形,故B不正確;對于C,因為,所以,即,由正弦定理得,由余弦定理得,因為,所以,故三角形為鈍角三角形,C不正確;對于D,由可得,因為中最多只有一個鈍角,所以,,中最多只有一個為負數(shù),所以,,,所以中三個內(nèi)角都為銳角,所以為銳角三角形,故D正確;故選:D4、D【解析】先求導數(shù),得切線的斜率,再根據(jù)點斜式得切線方程.【詳解】,選D.點睛】本題考查導數(shù)幾何意義以及直線點斜式方程,考查基本求解能力,屬基礎題.5、B【解析】求出樣本中心的橫坐標,代入回歸直線方程,求出樣本中心的縱坐標,然后求解即可【詳解】因為,代入回歸直線方程為,所以,,于是得,解得故選:B6、B【解析】根據(jù)和可求得,結合等差數(shù)列通項公式可求得.【詳解】設等差數(shù)列公差為,由得:;又,,.故選:B.7、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.8、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關系式,變形后可得離心率【詳解】由題意,又,所以,從而,,,中,,中.,所以,,所以,故選:C9、A【解析】依據(jù)定義法去求動圓的圓心的軌跡即可解決.【詳解】設動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A10、C【解析】焦點在軸上的是C和D,漸近線方程為,故選C考點:1.雙曲線的標準方程;2.雙曲線的簡單幾何性質11、A【解析】根據(jù)數(shù)據(jù)的特征以及各統(tǒng)計圖表的特征分析即可;【詳解】解:莖葉圖、條形圖、扇形圖均能將數(shù)據(jù)描述出來,并且能夠體現(xiàn)出數(shù)據(jù)的變化趨勢;散點圖表示因變量隨自變量而變化的大致趨勢,故用來描述該超市近10天的日客流量不是很合適;故選:A12、B【解析】根據(jù)復數(shù)的幾何意義求出的范圍,即可得出答案.【詳解】解:當z在復平面內(nèi)對應的點在第二象限時,則有,可得,結合選項可知,B正確故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先設出與直線垂直的直線方程,再把代入進行求解.【詳解】設與直線垂直的直線為,將代入得:,解得:,故所求直線方程為.故答案為:14、【解析】根據(jù)導數(shù)的幾何意義求出切線的斜率,利用點斜式求切線方程.【詳解】解:因,所以,又故切線方程為,整理為,故答案為:15、376【解析】由題設知集合的規(guī)律為最小的元素為且元素構成公差1的等差數(shù)列,共有個元素,即可寫出的所有元素,應用等差數(shù)列前n項和公式求激活碼.【詳解】由題設,或,即,或,即,所以或,則,故各個元素之和為.故答案為:.16、.【解析】根據(jù)條件求出c,進而根據(jù)求出a,最后寫出漸近線方程.【詳解】因為雙曲線兩焦點之間的距離為4,所以,解得,所以,,雙曲線的漸近線方程是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)導數(shù)的幾何意義進行求解即可;(2)利用常變量分離法,通過構造新函數(shù),由方程有兩個不同的實數(shù)解問題,轉化為兩個函數(shù)的圖象有兩個交點問題,利用導數(shù)進行求解即可.【小問1詳解】設曲線的切點坐標為,由,所以過該切點的切線的斜率為,因此該切線方程為:,因為直線與函數(shù)的圖象相切,所以,因為直線與函數(shù)的圖象相切,且函數(shù)過原點,所以曲線的切點為,于是有,即;【小問2詳解】由可得:,當時,顯然不成立,當時,由,設函數(shù),,,當時,,單調遞減,當時,,單調遞減,當時,,單調遞增,因此當時,函數(shù)有最小值,最小值為,而,當時,,函數(shù)圖象如下圖所示:方程有兩個不同的實數(shù)解,轉化為函數(shù)和函數(shù)的圖象,在當時,有兩個不同的交點,由圖象可知:,故a的取值范圍為.【點睛】關鍵點睛:利用常變量分離法,結合轉化法進行求解是解題的關鍵.18、(1);(2)【解析】(1)設點的坐標為,由,結合兩點間的距離公式,列出式子,可求出軌跡方程;(2)易知,且,可求出到直線的距離,結合點到直線的距離為,可求出直線的斜率【詳解】(1)設點的坐標為,由,可得,整理得,所以所求曲線的軌跡方程為(2)依題意,,且,在△中,,取的中點,連結,則,所以,即點到直線:的距離為,解得,所以所求直線斜率為【點睛】本題考查軌跡方程,考查直線的斜率,考查兩點間的距離公式、點到直線的距離公式的應用,考查學生的計算求解能力,屬于基礎題.19、(1);(2)存在,.【解析】(1)利用拋物線的定義即求;(2)由題可設直線的方程為,利用韋達定理法結合條件可得,即得.【小問1詳解】因為動點到點的距離等于點到直線的距離,所以動點到點的距離和它到直線的距離相等,所以點的軌跡是以為焦點,以直線為準線的拋物線,設拋物線方程為,由,得,所以動點的軌跡方程為.【小問2詳解】由題意可知,直線的斜率不為0,故設直線的方程為,.聯(lián)立,得,恒成立,由韋達定理,得,,假設存在一點,滿足題意,則直線的斜率與直線的斜率滿足,即,所以,所以解得,所以存在一點,滿足,點的坐標為.20、(1);(2)2x﹣y﹣6=0﹒【解析】(1)根據(jù)拋物線焦半徑公式構造方程求得,從而得到結果(2)設直線,代入拋物線方程可得韋達定理的形式,根據(jù)可構造方程求得,從而得到直線方程【小問1詳解】由拋物線定義可知:,解得:,拋物線的方程為:【小問2詳解】由拋物線方程知:,設直線,,,,,聯(lián)立方程,得:,,,以線段為直徑的圓過點,,,解得:,直線的方程為:,即21、(1)(2)【解析】(1)根據(jù)垂直關系依次求解每個側面三角形邊長和面積即可得解;(2)建立空間直角坐標系,利用向量法求解.小問1詳解】由題可得:,則,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交線,所以BC⊥平面SAB,BC⊥BS,,所以四棱錐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論