版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
浙江省寧波市慈溪市三山高級中學(xué)等六校2025屆高一上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的零點所在的區(qū)間是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.函數(shù)的最小值是()A. B.0C.2 D.63.方程的解所在的區(qū)間是A B.C. D.4.已知方程,在區(qū)間(-2,0)上的解可用二分法求出,則的取值范圍是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]5.函數(shù)的單調(diào)減區(qū)間為()A. B.C. D.6.已知集合,,,則()A.{6,8} B.{2,3,6,8}C.{2} D.{2,6,8}7.已知實數(shù)滿足,那么的最小值為(
)A. B.C. D.8.若和都是定義在上的奇函數(shù),則()A.0 B.1C.2 D.39.已知,則()A. B.C. D.10.已知,則=()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點,,在函數(shù)的圖象上,如圖,若,則______.12.函數(shù),若最大值為,最小值為,,則的取值范圍是______.13.如圖,點為銳角的終邊與單位圓的交點,逆時針旋轉(zhuǎn)得,逆時針旋轉(zhuǎn)得逆時針旋轉(zhuǎn)得,則__________,點的橫坐標(biāo)為_________14.的邊的長分別為,且,,,則__________.15.已知,,則的最小值是___________.16.已知冪函數(shù)(為常數(shù))的圖像經(jīng)過點,則__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值18.如圖,平面,,,,分別為的中點.(I)證明:平面;(II)求與平面所成角的正弦值.19.(1)求值:;(2)已知,,試用表示.20.已知函數(shù).(1)求函數(shù)的最小正周期及對稱軸方程;(2)若,求的值.21.已知函數(shù)是定義域為R的奇函數(shù).(1)求t的值,并寫出的解析式;(2)判斷在R上的單調(diào)性,并用定義證明;(3)若函數(shù)在上的最小值為,求k的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用零點存在性定理判斷即可.【詳解】易知函數(shù)的圖像連續(xù),,由零點存在性定理,排除A;又,,排除B;,,結(jié)合零點存在性定理,C正確故選:C.【點睛】判斷零點所在區(qū)間,只需利用零點存在性定理,求出區(qū)間端點的函數(shù)值,兩者異號即可,注意要看定義域判斷圖像是否連續(xù).2、B【解析】時,,故選B.3、C【解析】設(shè),則由指數(shù)函數(shù)與一次函數(shù)的性質(zhì)可知,函數(shù)與的上都是遞增函數(shù),所以在上單調(diào)遞增,故函數(shù)最多有一個零點,而,,根據(jù)零點存在定理可知,有一個零點,且該零點處在區(qū)間內(nèi),故選答案C.考點:函數(shù)與方程.4、B【解析】根據(jù)零點存在性定理,可得,求解即可.【詳解】因為方程在區(qū)間(-2,0)上的解可用二分法求出,所以有,解得.故選B【點睛】本題主要考查零點的存在性定理,熟記定理即可,屬于基礎(chǔ)題型.5、A【解析】求出的范圍,函數(shù)的單調(diào)減區(qū)間為的增區(qū)間,即可得到答案.【詳解】由可得或函數(shù)的單調(diào)減區(qū)間為的增區(qū)間故選:A6、A【解析】由已知,先有集合和集合求解出,再根據(jù)集合求解出即可.【詳解】因為,,所以,又因為,所以.故選:A.7、A【解析】表示直線上的點到原點的距離,利用點到直線的距離公式求得最小值.【詳解】依題意可知表示直線上的點到原點的距離,故原點到直線的距離為最小值,即最小值為,故選A.【點睛】本小題主要考查點到直線的距離公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.8、A【解析】根據(jù)題意可知是周期為的周期函數(shù),以及,,由此即可求出結(jié)果.【詳解】因為和都是定義在上的奇函數(shù),所以,,所以,所以,所以是周期為周期函數(shù),所以因為是定義在上的奇函數(shù),所以,又是定義在上的奇函數(shù),所以,所以,即,所以.故選:A.9、C【解析】先對兩邊平方,構(gòu)造齊次式進而求出或,再用正切的二倍角公式即可求解.【詳解】解:對兩邊平方得,進一步整理可得,解得或,于是故選:C【點睛】本題考查同角三角函數(shù)關(guān)系和正切的二倍角公式,考查運算能力,是中檔題.10、B【解析】根據(jù)兩角和的正切公式求出,再根據(jù)二倍角公式以及同角三角函數(shù)的基本關(guān)系將弦化切,代入求值即可.【詳解】解:解得故選:【點睛】本題考查三角恒等變換以及同角三角函數(shù)的基本關(guān)系,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】設(shè)的中點為,連接,由條件判斷是等邊三角形,并且求出和的長度,即根據(jù)周期求.【詳解】設(shè)的中點為,連接,,,且,是等邊三角形,并且的高是,,即,,即,解得:.故答案為:【點睛】本題考查根據(jù)三角函數(shù)的周期求參數(shù),意在考查數(shù)形結(jié)合分析問題和解決問題的能力,屬于基礎(chǔ)題型,本題的關(guān)鍵是利用直角三角形的性質(zhì)和三角函數(shù)的性質(zhì)判斷的等邊三角形.12、【解析】先化簡,然后分析的奇偶性,將的最大值和小值之和轉(zhuǎn)化為和有關(guān)的式子,結(jié)合對勾函數(shù)的單調(diào)性求解出的取值范圍.【詳解】,令,定義域為關(guān)于原點對稱,∴,∴為奇函數(shù),∴,∴,,由對勾函數(shù)的單調(diào)性可知在上單調(diào)遞減,在上單調(diào)遞增,∴,,,∴,∴,故答案為:.【點睛】關(guān)鍵點點睛:解答本題的關(guān)鍵在于函數(shù)奇偶性的判斷,同時需要注意到奇函數(shù)在定義域上如果有最值,那么最大值和最小值一定是互為相反數(shù).13、①.##0.96②.【解析】由終邊上的點得,,應(yīng)用二倍角正弦公式求,根據(jù)題設(shè)描述知在的終邊上,結(jié)合差角余弦公式求其余弦值即可得橫坐標(biāo).【詳解】由題設(shè)知:,,∴,所在角為,則,∴點的橫坐標(biāo)為.故答案為:,.14、【解析】由正弦定理、余弦定理得答案:15、【解析】化簡函數(shù),由,得到,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),因為,可得,當(dāng)時,即時,函數(shù)取得最小值.故答案為:.16、3【解析】設(shè),依題意有,故.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,單調(diào)遞增區(qū)間為,k∈Z;(2)最大值為,最小值為【解析】(1)先通過降冪公式化簡得,進而求出最小正周期和單調(diào)遞增區(qū)間;(2)通過,求出,進而求出最大值和最小值.【小問1詳解】,∴函數(shù)f(x)的最小正周期為,令,k∈Z,則,k∈Z,∴函數(shù)f(x)的單調(diào)遞增區(qū)間為,k∈Z【小問2詳解】∵,∴,則,∴,∴函數(shù)f(x)的最大值為,最小值為18、(Ⅰ)略(Ⅱ)【解析】(I)證明:連接,在中,分別是的中點,所以,又,所以,又平面ACD,DC平面ACD,所以平面ACD(Ⅱ)在中,,所以而DC平面ABC,,所以平面ABC而平面ABE,所以平面ABE平面ABC,所以平面ABE由(Ⅰ)知四邊形DCQP是平行四邊形,所以所以平面ABE,所以直線AD在平面ABE內(nèi)的射影是AP,所以直線AD與平面ABE所成角是在中,,所以考點:線面平行的判定定理;線面角點評:本題主要考查了空間中直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做.而對于利用向量法求線面角關(guān)鍵是正確寫出點的坐標(biāo)和求解平面的一個法向量.注意計算要仔細(xì)、認(rèn)真19、(1)(2)【解析】(1)先將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)并約簡,然后各式化成指數(shù)冪的形式,再利用指數(shù)運算法則即可化簡求值.(2)先利用對數(shù)的換底公式,以及相關(guān)的運算公式將轉(zhuǎn)化為以表示的式子,然后換成m,n即可.【詳解】解:(1)原式(2)原式【點睛】主要考查指數(shù)冪運算公式以及對數(shù)的運算公式的應(yīng)用,屬于基礎(chǔ)題.20、(1)周期,對稱軸;(2)【解析】(1)化簡函數(shù),根據(jù)正弦函數(shù)的性質(zhì)得到函數(shù)的最小正周期及對稱軸方程;(2)由題可得,結(jié)合二倍角余弦公式可得結(jié)果.【詳解】(1),,∴的最小正周期,令,可得,(2)由,得,可得:,【點睛】本題考查三角函數(shù)的性質(zhì),考查三角恒等變換,考查計算能力,屬于基礎(chǔ)題.21、(1)或,;(2)R上單調(diào)遞增,證明見解析;(3)【解析】(1)是定義域為R的奇函數(shù),利用奇函數(shù)的必要條件,求出的值,進而求出,驗證是否為奇函數(shù);(2)可判斷在上為增函數(shù),用函數(shù)的單調(diào)性定義加以證明,取兩個不等的自變量,對應(yīng)函數(shù)值做差,因式分解,判斷函數(shù)值差的符號,即可證明結(jié)論;(3)由,換元令,,由(2)得,,根據(jù)條件轉(zhuǎn)化為在最小值為-2,對二次函數(shù)配方,求出對稱軸,分類討論求出最小值,即可求解【詳解】解:(1)因為是定義域為R的奇函數(shù),所以,即,解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版廣告宣傳合作協(xié)議樣式版
- 二零二五版企業(yè)品牌推廣廣告服務(wù)協(xié)議3篇
- 2024版混合磚煙囪拆除施工協(xié)議條款版
- 專業(yè)保安服務(wù)2024年度合作合同版B版
- 二零二五年生鐵原料進口代理合同3篇
- 2024年版短期工聘用合同
- 天津大學(xué)《電氣控制與PC應(yīng)用技術(shù)(環(huán)工)》2023-2024學(xué)年第一學(xué)期期末試卷
- 蘇州工藝美術(shù)職業(yè)技術(shù)學(xué)院《城鄉(xiāng)規(guī)劃原理A》2023-2024學(xué)年第一學(xué)期期末試卷
- 四川外國語大學(xué)成都學(xué)院《閱讀教學(xué)中的文本解讀》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024生豬養(yǎng)殖項目投資合作合同3篇
- 傷口敷料種類及作用-課件
- 手術(shù)室護理實踐指南2023年
- 電力安全工作規(guī)程(變電部分)課件
- 新人教版六年級下冊數(shù)學(xué)全冊課件
- 環(huán)保設(shè)施安全風(fēng)險告知卡
- 卵石地層樁基旋挖鉆施工方案
- (完整word版)手卡模板
- GB/T 4091-2001常規(guī)控制圖
- GB/T 13912-2020金屬覆蓋層鋼鐵制件熱浸鍍鋅層技術(shù)要求及試驗方法
- GB 18399-2001棉花加工機械安全要求
- 陜西省延安市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細(xì)
評論
0/150
提交評論