版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
吉林省公主嶺市范家屯鎮(zhèn)第一中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù)在定義域內(nèi)可導(dǎo),的圖像如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.2.已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)在拋物線上,且,點(diǎn)是拋物線的準(zhǔn)線上的一動(dòng)點(diǎn),則的最小值為().A. B.C. D.3.設(shè)函數(shù)是定義在上的奇函數(shù),且,當(dāng)時(shí),有恒成立.則不等式的解集為()A. B.C. D.4.命題“存在,使得”為真命題的一個(gè)充分不必要條件是()A. B.C. D.5.的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形6.曲線為四葉玫瑰線,這種曲線在苜蓿葉型立交橋的布局中有非常廣泛的應(yīng)用,苜蓿葉型立交橋有兩層,將所有原來(lái)需要穿越相交道路的轉(zhuǎn)向都由環(huán)形匝道來(lái)實(shí)現(xiàn),即讓左轉(zhuǎn)車輛行駛環(huán)道后自右側(cè)切向匯入高速公路,四條環(huán)形匝道就形成了苜蓿葉的形狀.下列結(jié)論正確的個(gè)數(shù)是()①曲線C關(guān)于點(diǎn)(0,0)對(duì)稱;②曲線C關(guān)于直線y=x對(duì)稱;③曲線C的面積超過(guò)4π.A.0 B.1C.2 D.37.圓心,半徑為的圓的方程是()A. B.C. D.8.在等差數(shù)列中,,則()A.9 B.6C.3 D.19.在中,角A,B,C所對(duì)的邊分別為a,b,c,已知,則的面積為()A. B.C. D.10.“冰雹猜想”數(shù)列滿足:,,若,則()A.4 B.3C.2 D.111.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.12.將上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到曲線C,若直線l與曲線C交于A,B兩點(diǎn),且AB中點(diǎn)坐標(biāo)為M(1,),那么直線l的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,在正方體中,點(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則異面直線與所成角的取值范圍為_(kāi)___________14.圓錐的軸截面是邊長(zhǎng)為2的等邊三角形,為底面中心,為的中點(diǎn),動(dòng)點(diǎn)在圓錐底面內(nèi)(包括圓周).若,則點(diǎn)形成的軌跡的長(zhǎng)度為_(kāi)_____15.已知焦點(diǎn)為F的拋物線的方程為,點(diǎn)Q的坐標(biāo)為,點(diǎn)P在拋物線上,則點(diǎn)P到y(tǒng)軸的距離與到點(diǎn)Q的距離的和的最小值為_(kāi)_____.16.?dāng)?shù)學(xué)家華羅庚說(shuō):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微”,事實(shí)上,很多代數(shù)問(wèn)題可以轉(zhuǎn)化為幾何問(wèn)題加以解決.例如:與相關(guān)的代數(shù)問(wèn)題,可以轉(zhuǎn)化為點(diǎn)與點(diǎn)之間的距離的幾何問(wèn)題.結(jié)合上述觀點(diǎn):對(duì)于函數(shù),的最小值為_(kāi)_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)命題p:直線l:與圓C:有公共點(diǎn),命題q:雙曲線的離心率(1)若p,q均為真命題,求實(shí)數(shù)m的取值范圍;(2)若為真,為假,求實(shí)數(shù)m的取值范圍18.(12分)已知橢圓過(guò)點(diǎn),離心率為.(1)求橢圓的方程;(2)過(guò)點(diǎn)作直線,與直線和橢圓分別交于兩點(diǎn),(與不重合).判斷以為直徑的圓是否過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);如果不過(guò)定點(diǎn),說(shuō)明理由.19.(12分)已知定點(diǎn),動(dòng)點(diǎn)與連線的斜率之積.(1)設(shè)動(dòng)點(diǎn)的軌跡為,求的方程;(2)若是上關(guān)于軸對(duì)稱的兩個(gè)不同點(diǎn),直線與軸分別交于點(diǎn).試判斷以為直徑的圓是否過(guò)定點(diǎn),如經(jīng)過(guò),求出定點(diǎn)坐標(biāo);如不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.20.(12分)寫(xiě)出下列命題的否定,并判斷它們的真假:(1):任意兩個(gè)等邊三角形都是相似的;(2):,.21.(12分)已知橢圓的右焦點(diǎn)是橢圓上的一動(dòng)點(diǎn),且的最小值是1,當(dāng)垂直長(zhǎng)軸時(shí),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與橢圓相切,且交圓于兩點(diǎn),求面積的最大值,并求此時(shí)直線方程.22.(10分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)函數(shù)的單調(diào)性得到導(dǎo)數(shù)的正負(fù),從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當(dāng)時(shí),單調(diào)遞增,則,所以A選項(xiàng)和C選項(xiàng)錯(cuò)誤;當(dāng)時(shí),先增,再減,然后再增,則先正,再負(fù),然后再正,所以B選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,意在考查學(xué)生對(duì)該知識(shí)的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個(gè)區(qū)間可導(dǎo),,則在這個(gè)區(qū)間是增函數(shù);函數(shù)在某個(gè)區(qū)間可導(dǎo),,則在這個(gè)區(qū)間是減函數(shù).2、A【解析】求出點(diǎn)坐標(biāo),做出關(guān)于準(zhǔn)線的對(duì)稱點(diǎn),利用連點(diǎn)之間相對(duì)最短得出為的最小值【詳解】解:拋物線的準(zhǔn)線方程為,,到準(zhǔn)線的距離為2,故點(diǎn)縱坐標(biāo)為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點(diǎn)關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,連接,則,于是故的最小值為故選:A【點(diǎn)睛】本題考查了拋物線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題3、B【解析】根據(jù)當(dāng)時(shí),可知在上單調(diào)遞減,結(jié)合可確定在上的解集;根據(jù)奇偶性可確定在上的解集;由此可確定結(jié)果.【詳解】,當(dāng)時(shí),,在上單調(diào)遞減,,,在上的解集為,即在上的解集為;又為上的奇函數(shù),,為上的偶函數(shù),在上的解集為,即在上的解集為;當(dāng)時(shí),,不合題意;綜上所述:的解集為.故選:.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性和奇偶性求解函數(shù)不等式的問(wèn)題,關(guān)鍵是能夠通過(guò)構(gòu)造函數(shù)的方式,確定所構(gòu)造函數(shù)的單調(diào)性和奇偶性,進(jìn)而根據(jù)零點(diǎn)確定不等式的解集.4、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因?yàn)椤按嬖?,使得”為真命題,所以,因此上述命題得個(gè)充分不必要條件是.故選:B.【點(diǎn)睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.5、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因?yàn)?,所以,則,所以,所以是等腰三角形.故選:B.6、C【解析】根據(jù)圖像或解析式即可判斷對(duì)稱性①②;估算第一象限內(nèi)圖像面積即可判斷③.【詳解】①將點(diǎn)(-x,-y)代入后依然為,故曲線C關(guān)于原點(diǎn)對(duì)稱;②將點(diǎn)(y,x)代入后依然為,故曲線C關(guān)于y=x對(duì)稱;③曲線C在四個(gè)象限的圖像是完全相同的,不妨只研究第一象限的部分,∵,∴曲線C上離原點(diǎn)最遠(yuǎn)的點(diǎn)的距離為顯然第一象限內(nèi)曲線C的面積小于以為直徑的圓的面積,又∵,∴第一象限內(nèi)曲線C的面積小于,則曲線C的總面積小于4π.故③錯(cuò)誤.故選:C.7、D【解析】根據(jù)圓心坐標(biāo)及半徑,即可得到圓的方程.【詳解】因?yàn)閳A心為,半徑為,所以圓的方程為:.故選:D.8、A【解析】直接由等差中項(xiàng)得到結(jié)果.詳解】由得.故選:A.9、A【解析】由余弦定理計(jì)算求得角,根據(jù)三角形面積公式計(jì)算即可得出結(jié)果.【詳解】由余弦定理得,,∴,∴,故選:A10、A【解析】根據(jù)題意分別假設(shè)為奇數(shù)、偶數(shù)的情況,求出對(duì)應(yīng)的即可.【詳解】由題意知,因?yàn)?,若為奇?shù)時(shí),,與為奇數(shù)矛盾,不符合題意;若為偶數(shù)時(shí),,可得,符合題意.不符合故選:A11、C【解析】當(dāng)成立,寫(xiě)出左側(cè)的表達(dá)式,當(dāng)時(shí),寫(xiě)出對(duì)應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C12、A【解析】先根據(jù)題意求出曲線C的方程,然后利用點(diǎn)差法求出直線l的斜率,從而可求出直線方程【詳解】設(shè)點(diǎn)為曲線C上任一點(diǎn),其在上對(duì)應(yīng)在的點(diǎn)為,則,得,所以,所以曲線C的方程為,設(shè),則,兩方程相減整理得,因?yàn)锳B中點(diǎn)坐標(biāo)為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過(guò)作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點(diǎn)在上,設(shè)正方體的棱長(zhǎng)為,且,得到,,設(shè)與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過(guò)作平面平面,因?yàn)辄c(diǎn)是底面內(nèi)(含邊界)的一點(diǎn),且平面,則平面,即在與平面的交線上,連接,因?yàn)榍?,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點(diǎn)在線段上,設(shè)正方體的棱長(zhǎng)為,且,則,,可得,設(shè)與所成角為,則,當(dāng)時(shí),取得最小值,最小值為,當(dāng)或時(shí),取得最大值,最大值為故答案為14、【解析】建立空間直角坐標(biāo)系設(shè),,,,于是,,因?yàn)?,所以,從而,,此為點(diǎn)形成的軌跡方程,其在底面圓盤內(nèi)的長(zhǎng)度為15、##【解析】利用定義將所求距離之和的最小值問(wèn)題,轉(zhuǎn)化為的最小值問(wèn)題.【詳解】焦點(diǎn)F坐標(biāo)為,拋物線準(zhǔn)線為,如圖,作垂直于準(zhǔn)線于A,交y軸于B,.故答案為:16、【解析】根據(jù)題意得,表示點(diǎn)與點(diǎn)與距離之和的最小值,再找對(duì)稱點(diǎn)求解即可.【詳解】函數(shù),表示點(diǎn)與點(diǎn)與距離之和的最小值,則點(diǎn)在軸上,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),所以,所以的最小值為:.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2).【解析】(1)求出,成立的等價(jià)條件,即可求實(shí)數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當(dāng)真假時(shí),求出的取值范圍,當(dāng)假真時(shí),求出的取值范圍,然后取并集即可得答案【小問(wèn)1詳解】若命題為真命題,則,解得:,若命題為真命題,則且,,解得,∴,均為真命題,實(shí)數(shù)的取值范圍是,;【小問(wèn)2詳解】若為真,為假,則、一真一假;①當(dāng)真假時(shí),即“”且“或”,則此時(shí)的取值范圍是;當(dāng)假真時(shí),即“或”且“”,則此時(shí)的取值范圍是;綜上,的取值范圍是18、(1)(2)過(guò)定點(diǎn),定點(diǎn)為【解析】(1)根據(jù)離心率及頂點(diǎn)坐標(biāo)求出即可得橢圓方程;(2)當(dāng)直線斜率存在時(shí),設(shè)直線的方程為(),求出的坐標(biāo),設(shè)是以為直徑的圓上的點(diǎn),利用向量垂直可得恒成立,可得定點(diǎn),斜率不存在時(shí)驗(yàn)證即可.【小問(wèn)1詳解】由題意得,,,又因?yàn)?,所?所以橢圓C的方程為.【小問(wèn)2詳解】以為直徑的圓過(guò)定點(diǎn).理由如下:當(dāng)直線斜率存在時(shí),設(shè)直線的方程為().令,得,所以.由得,則或,所以.設(shè)是以為直徑的圓上的任意一點(diǎn),則,.由題意,,則以為直徑的圓的方程為.即恒成立即解得故以為直徑的圓恒過(guò)定點(diǎn).當(dāng)直線斜率不存在時(shí),以為直徑的圓也過(guò)點(diǎn).綜上,以為直徑的圓恒過(guò)定點(diǎn).19、(1);(2)以為直徑的圓過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為和.【解析】(1)設(shè)動(dòng)點(diǎn)的坐標(biāo),利用斜率坐標(biāo)公式結(jié)合已知列式即可作答.(2)設(shè)上任意一點(diǎn),求出點(diǎn)M,N的坐標(biāo),再求出以為直徑的圓的方程即可分析作答.【小問(wèn)1詳解】設(shè)點(diǎn),則直線PA,PB的斜率分別為:,,依題意,,化簡(jiǎn)整理得:,所以的方程是:.【小問(wèn)2詳解】由(1)知,令是上任意一點(diǎn),則點(diǎn),直線:,則點(diǎn),直線:,則點(diǎn),以MN為直徑的圓上任意一點(diǎn),當(dāng)點(diǎn)Q與M,N都不重合時(shí),,有,當(dāng)點(diǎn)Q與M,N之一重合時(shí),也成立,因此,以MN為直徑的圓的方程為:,化簡(jiǎn)整理得:,而,即,則以MN為直徑的圓的方程化為:,顯然當(dāng)時(shí),恒有,即圓恒過(guò)兩個(gè)定點(diǎn)和,所以以為直徑的圓過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為和.【點(diǎn)睛】知識(shí)點(diǎn)睛:以點(diǎn)為直徑兩個(gè)端點(diǎn)的圓的方程是:.20、(1)存在兩個(gè)等邊三角形不是相似的,假命題(2),真命題【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫(xiě),即可求解.【小問(wèn)1詳解】解:命題“任意兩個(gè)等邊三角形都是相似的”是一個(gè)全稱命題根據(jù)全稱命題與存在性命題的關(guān)系,可得其否定“存在兩個(gè)等邊三角形不是相似的”,命題為假命題.【小問(wèn)2詳解】解:根據(jù)全稱命題與存在性命題關(guān)系,可得:命題的否定為.因?yàn)?,所以命題為真命題.21、(1);(2),.【解析】(1)由的最小值為1,得到,再由,結(jié)合,求得的值,即可求得橢圓的方程.(2)設(shè)切線的方程為,聯(lián)立方程組,根據(jù)直線與橢圓相切,求得,結(jié)合點(diǎn)到直線的距離公式和圓的弦長(zhǎng)公式,求得的面積的表示,結(jié)合函數(shù)的單調(diào)性,即可求解.【詳解】(1)由題意,點(diǎn)橢圓上的一動(dòng)點(diǎn),且的最小值是1,得,因?yàn)楫?dāng)垂直長(zhǎng)軸時(shí),可得,所以,即,又由,解得,所以橢圓的標(biāo)準(zhǔn)方程為.(2)由題意知切線的斜率一定存在,否則不能形成,設(shè)切線的方程為,聯(lián)立,整理得,因?yàn)橹本€與橢圓相切,所以,化簡(jiǎn)得,則,因?yàn)辄c(diǎn)到直線的距離,所以,即,故的面積為,因?yàn)?,可得,即,函?shù)在上單調(diào)遞增,所以,當(dāng)時(shí)取
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 零售業(yè)中的顧客安全保障措施
- DB3715T 69-2025研學(xué)旅游指導(dǎo)師服務(wù)規(guī)范
- 專業(yè)技術(shù)人才海外培訓(xùn)服務(wù)合同(版)
- 上海股權(quán)轉(zhuǎn)讓合同文本
- 二手房轉(zhuǎn)讓合同定金協(xié)議書(shū)范本
- 中外合資企業(yè)勞動(dòng)合同樣本
- 個(gè)人保證擔(dān)保融資合同協(xié)議
- NBA賽事中國(guó)區(qū)電視轉(zhuǎn)播合同
- 互利共贏投資合作合同
- 個(gè)人物流配送服務(wù)合同模板
- 注射用醋酸亮丙瑞林微球
- 部編版語(yǔ)文五年級(jí)下冊(cè) 全冊(cè)教材分析
- 胎兒性別鑒定報(bào)告模板
- 大學(xué)生就業(yè)指導(dǎo)PPT(第2版)全套完整教學(xué)課件
- 家具安裝工培訓(xùn)教案優(yōu)質(zhì)資料
- 湖南大一型抽水蓄能電站施工及質(zhì)量創(chuàng)優(yōu)匯報(bào)
- 耳穴療法治療失眠
- 少兒財(cái)商教育少兒篇
- GB 1886.114-2015食品安全國(guó)家標(biāo)準(zhǔn)食品添加劑紫膠(又名蟲(chóng)膠)
- envi二次開(kāi)發(fā)素材包-idl培訓(xùn)
- 2022年上海市初中語(yǔ)文課程終結(jié)性評(píng)價(jià)指南
評(píng)論
0/150
提交評(píng)論