版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省成都市龍泉驛區(qū)達(dá)標(biāo)名校2023-2024學(xué)年中考數(shù)學(xué)仿真試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在平面直角坐標(biāo)系xOy中,A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(﹣1,0),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于E點(diǎn),則△ABE面積的最小值是()A.2B.83C.2+22.方程x2﹣4x+5=0根的情況是()A.有兩個(gè)不相等的實(shí)數(shù)根 B.有兩個(gè)相等的實(shí)數(shù)根C.有一個(gè)實(shí)數(shù)根 D.沒(méi)有實(shí)數(shù)根3.如圖,在平面直角坐標(biāo)系中,線段AB的端點(diǎn)坐標(biāo)為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點(diǎn),則K的值不可能是()A.-5 B.-2 C.3 D.54.下列哪一個(gè)是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過(guò)切點(diǎn)的半徑C.(3,﹣2)關(guān)于y軸的對(duì)稱點(diǎn)為(﹣3,2)D.拋物線y=x2﹣4x+2017對(duì)稱軸為直線x=25.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數(shù)軸上,其中點(diǎn)A,D分別對(duì)應(yīng)數(shù)軸上的實(shí)數(shù)﹣2,2,則AC的長(zhǎng)度為()A.2 B.4 C.2 D.46.如圖,在直角坐標(biāo)系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點(diǎn)的個(gè)數(shù)是()A.0個(gè) B.1個(gè)或2個(gè)C.0個(gè)、1個(gè)或2個(gè) D.只有1個(gè)7.已知x1,x2是關(guān)于x的方程x2+ax-2b=0的兩個(gè)實(shí)數(shù)根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-18.七年級(jí)1班甲、乙兩個(gè)小組的14名同學(xué)身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯(cuò)誤的是()A.甲組同學(xué)身高的眾數(shù)是160B.乙組同學(xué)身高的中位數(shù)是161C.甲組同學(xué)身高的平均數(shù)是161D.兩組相比,乙組同學(xué)身高的方差大9.反比例函數(shù)y=(a>0,a為常數(shù))和y=在第一象限內(nèi)的圖象如圖所示,點(diǎn)M在y=的圖象上,MC⊥x軸于點(diǎn)C,交y=的圖象于點(diǎn)A;MD⊥y軸于點(diǎn)D,交y=的圖象于點(diǎn)B,當(dāng)點(diǎn)M在y=的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①S△ODB=S△OCA;②四邊形OAMB的面積不變;③當(dāng)點(diǎn)A是MC的中點(diǎn)時(shí),則點(diǎn)B是MD的中點(diǎn).其中正確結(jié)論的個(gè)數(shù)是()A.0 B.1 C.2 D.310.超市店慶促銷,某種書(shū)包原價(jià)每個(gè)x元,第一次降價(jià)打“八折”,第二次降價(jià)每個(gè)又減10元,經(jīng)兩次降價(jià)后售價(jià)為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.二次函數(shù)y=ax2+bx+c的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點(diǎn)坐標(biāo)為(,﹣2);⑤當(dāng)x<時(shí),y隨x的增大而減??;⑥a+b+c>0中,正確的有______.(只填序號(hào))12.如圖,四邊形ABCD是菱形,☉O經(jīng)過(guò)點(diǎn)A,C,D,與BC相交于點(diǎn)E,連接AC,AE,若∠D=78°,則∠EAC=________°.13.如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點(diǎn),過(guò)D點(diǎn)作AB的垂線交AC于點(diǎn)E,BC=6,sinA=,則DE=_____.14.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點(diǎn)D,滿足AD=AB,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當(dāng)DC’//BC時(shí),旋轉(zhuǎn)角度α的值為_(kāi)________,15.如圖,某水庫(kù)大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30°,迎水坡的坡度為1∶2,那么壩底的長(zhǎng)度等于________米(結(jié)果保留根號(hào))16.如圖所示,平行四邊形ABCD中,E、F是對(duì)角線BD上兩點(diǎn),連接AE、AF、CE、CF,添加__________條件,可以判定四邊形AECF是平行四邊形.(填一個(gè)符合要求的條件即可)三、解答題(共8題,共72分)17.(8分)解方程組:.18.(8分)如圖,在△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BF平分∠ABC交AD于點(diǎn)E,交AC于點(diǎn)F,求證:AE=AF.19.(8分)計(jì)算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);20.(8分)由于持續(xù)高溫和連日無(wú)雨,某水庫(kù)的蓄水量隨時(shí)間的增加而減少,已知原有蓄水量y1(萬(wàn)m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示,針對(duì)這種干旱情況,從第20天開(kāi)始向水庫(kù)注水,注水量y2(萬(wàn)m3)與時(shí)間(天)的關(guān)系如圖中線段l2所示(不考慮其他因素).(1)求原有蓄水量y1(萬(wàn)m3)與時(shí)間(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時(shí)的水庫(kù)總蓄水量.(2)求當(dāng)0≤x≤60時(shí),水庫(kù)的總蓄水量y萬(wàn)(萬(wàn)m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬(wàn)m3為嚴(yán)重干旱,直接寫(xiě)出發(fā)生嚴(yán)重干旱時(shí)x的范圍.21.(8分)學(xué)校決定在學(xué)生中開(kāi)設(shè):A、實(shí)心球;B、立定跳遠(yuǎn);C、跳繩;D、跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?(2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整.(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有2名男生,3名女生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求出剛好抽到不同性別學(xué)生的概率.22.(10分)已知:如圖,AB=AC,點(diǎn)D是BC的中點(diǎn),AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.23.(12分)為了解中學(xué)生“平均每天體育鍛煉時(shí)間”的情況,某地區(qū)教育部門(mén)隨機(jī)調(diào)查了若干名中學(xué)生,根據(jù)調(diào)查結(jié)果制作統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:(1)本次接受隨機(jī)抽樣調(diào)查的中學(xué)生人數(shù)為_(kāi)______,圖①中m的值是_____;(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)根據(jù)統(tǒng)計(jì)數(shù)據(jù),估計(jì)該地區(qū)250000名中學(xué)生中,每天在校體育鍛煉時(shí)間大于等于1.5h的人數(shù).24.如圖,為了測(cè)量建筑物AB的高度,在D處樹(shù)立標(biāo)桿CD,標(biāo)桿的高是2m,在DB上選取觀測(cè)點(diǎn)E、F,從E測(cè)得標(biāo)桿和建筑物的頂部C、A的仰角分別為58°、45°.從F測(cè)得C、A的仰角分別為22°、70°.求建筑物AB的高度(精確到0.1m).(參考數(shù)據(jù):tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】當(dāng)⊙C與AD相切時(shí),△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點(diǎn)C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.2、D【解析】
解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程沒(méi)有實(shí)數(shù)根.3、B【解析】
當(dāng)直線y=kx-2與線段AB的交點(diǎn)為A點(diǎn)時(shí),把A(-2,4)代入y=kx-2,求出k=-3,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≤-3時(shí)直線y=kx-2與線段AB有交點(diǎn);當(dāng)直線y=kx-2與線段AB的交點(diǎn)為B點(diǎn)時(shí),把B(4,2)代入y=kx-2,求出k=1,根據(jù)一次函數(shù)的有關(guān)性質(zhì)得到當(dāng)k≥1時(shí)直線y=kx-2與線段AB有交點(diǎn),從而能得到正確選項(xiàng).【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當(dāng)直線y=kx-2與線段AB有交點(diǎn),且過(guò)第二、四象限時(shí),k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當(dāng)直線y=kx-2與線段AB有交點(diǎn),且過(guò)第一、三象限時(shí),k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點(diǎn),則k的值不可能是-2.故選B.【點(diǎn)睛】本題考查了一次函數(shù)y=kx+b(k≠0)的性質(zhì):當(dāng)k>0時(shí),圖象必過(guò)第一、三象限,k越大直線越靠近y軸;當(dāng)k<0時(shí),圖象必過(guò)第二、四象限,k越小直線越靠近y軸.4、C【解析】分析:根據(jù)每個(gè)選項(xiàng)所涉及的數(shù)學(xué)知識(shí)進(jìn)行分析判斷即可.詳解:A選項(xiàng)中,“五邊形的外角和為360°”是真命題,故不能選A;B選項(xiàng)中,“切線垂直于經(jīng)過(guò)切點(diǎn)的半徑”是真命題,故不能選B;C選項(xiàng)中,因?yàn)辄c(diǎn)(3,-2)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)是(-3,-2),所以該選項(xiàng)中的命題是假命題,所以可以選C;D選項(xiàng)中,“拋物線y=x2﹣4x+2017對(duì)稱軸為直線x=2”是真命題,所以不能選D.故選C.點(diǎn)睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質(zhì);(3)點(diǎn)P(a,b)關(guān)于y軸的對(duì)稱點(diǎn)為(-a,b);(4)拋物線的對(duì)稱軸是直線:等數(shù)學(xué)知識(shí),是正確解答本題的關(guān)鍵.5、C【解析】
根據(jù)等腰三角形的性質(zhì)和勾股定理解答即可.【詳解】解:∵點(diǎn)A,D分別對(duì)應(yīng)數(shù)軸上的實(shí)數(shù)﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點(diǎn)睛】此題考查等腰三角形的性質(zhì),注意等腰三角形的三線合一,熟練運(yùn)用勾股定理.6、C【解析】
根據(jù)題意,利用分類討論的數(shù)學(xué)思想可以得到l與直線y=﹣1交點(diǎn)的個(gè)數(shù),從而可以解答本題.【詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點(diǎn)D位于直線y=﹣2與x軸之間的區(qū)域,開(kāi)口向下,∴當(dāng)頂點(diǎn)D位于直線y=﹣1下方時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為0,當(dāng)頂點(diǎn)D位于直線y=﹣1上時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為1,當(dāng)頂點(diǎn)D位于直線y=﹣1上方時(shí),則l與直線y=﹣1交點(diǎn)個(gè)數(shù)為2,故選C.【點(diǎn)睛】考查拋物線與x軸的交點(diǎn)、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用函數(shù)的思想和分類討論的數(shù)學(xué)思想解答.7、A【解析】
根據(jù)根與系數(shù)的關(guān)系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關(guān)于x的方程x2+ax﹣2b=0的兩實(shí)數(shù)根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.8、D【解析】
根據(jù)眾數(shù)、中位數(shù)和平均數(shù)及方差的定義逐一判斷可得.【詳解】A.甲組同學(xué)身高的眾數(shù)是160,此選項(xiàng)正確;B.乙組同學(xué)身高的中位數(shù)是161,此選項(xiàng)正確;C.甲組同學(xué)身高的平均數(shù)是161,此選項(xiàng)正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項(xiàng)錯(cuò)誤.故選D.【點(diǎn)睛】本題考查了眾數(shù)、中位數(shù)和平均數(shù)及方差,掌握眾數(shù)、中位數(shù)和平均數(shù)及方差的定義和計(jì)算公式是解題的關(guān)鍵.9、D【解析】
根據(jù)反比例函數(shù)的性質(zhì)和比例系數(shù)的幾何意義逐項(xiàng)分析可得出解.【詳解】①由于A、B在同一反比例函數(shù)y=圖象上,由反比例系數(shù)的幾何意義可得S△ODB=S△OCA=1,正確;②由于矩形OCMD、△ODB、△OCA為定值,則四邊形MAOB的面積不會(huì)發(fā)生變化,正確;③連接OM,點(diǎn)A是MC的中點(diǎn),則S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面積相等,點(diǎn)B一定是MD的中點(diǎn).正確;故答案選D.考點(diǎn):反比例系數(shù)的幾何意義.10、A【解析】試題分析:設(shè)某種書(shū)包原價(jià)每個(gè)x元,根據(jù)題意列出方程解答即可.設(shè)某種書(shū)包原價(jià)每個(gè)x元,可得:0.8x﹣10=90考點(diǎn):由實(shí)際問(wèn)題抽象出一元一次方程.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、①②③⑤【解析】
根據(jù)圖象可判斷①②③④⑤,由x=1時(shí),y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對(duì)稱軸為x=∴abc>0,4ac<b2,當(dāng)時(shí),y隨x的增大而減小.故①②⑤正確,∵∴2a+b>0,故③正確,由圖象可得頂點(diǎn)縱坐標(biāo)小于﹣2,則④錯(cuò)誤,當(dāng)x=1時(shí),y=a+b+c<0,故⑥錯(cuò)誤故答案為:①②③⑤【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開(kāi)口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.12、1.【解析】
解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內(nèi)接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°13、【解析】
∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中點(diǎn),∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.14、15或255°【解析】如下圖,設(shè)直線DC′與AB相交于點(diǎn)E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當(dāng)DC′∥BC時(shí),旋轉(zhuǎn)角=15°;同理,當(dāng)DC′′∥BC時(shí),旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當(dāng)旋轉(zhuǎn)角=15°或255°時(shí),DC′//BC.故答案為:15°或255°.15、【解析】
過(guò)梯形上底的兩個(gè)頂點(diǎn)向下底引垂線、,得到兩個(gè)直角三角形和一個(gè)矩形,分別解、求得線段、的長(zhǎng),然后與相加即可求得的長(zhǎng).【詳解】如圖,作,,垂足分別為點(diǎn)E,F(xiàn),則四邊形是矩形.由題意得,米,米,,斜坡的坡度為1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度為1∶2,∴,∴米,∴(米).∴壩底的長(zhǎng)度等于米.故答案為.【點(diǎn)睛】此題考查了解直角三角形的應(yīng)用﹣坡度坡角問(wèn)題,難度適中,解答本題的關(guān)鍵是構(gòu)造直角三角形和矩形,注意理解坡度與坡角的定義.16、BE=DF【解析】可以添加的條件有BE=DF等;證明:∵四邊形ABCD是平行四邊形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;∴四邊形AECF是平行四邊形.(一組對(duì)邊平行且相等的四邊形是平行四邊形)故答案為BE=DF.三、解答題(共8題,共72分)17、;;.【解析】分析:把原方程組中的第二個(gè)方程通過(guò)分解因式降次,轉(zhuǎn)化為兩個(gè)一次方程,再分別和第一方程組合成兩個(gè)新的方程組,分別解這兩個(gè)新的方程組即可求得原方程組的解.詳解:由方程可得,,;則原方程組轉(zhuǎn)化為(Ⅰ)或(Ⅱ),解方程組(Ⅰ)得,解方程組(Ⅱ)得,∴原方程組的解是.點(diǎn)睛:本題考查的是二元二次方程組的解法,解題的要點(diǎn)有兩點(diǎn):(1)把原方程組中的第2個(gè)方程通過(guò)分解因式降次轉(zhuǎn)化為兩個(gè)二元一次方程,并分別和第1個(gè)方程組合成兩個(gè)新的方程組;(2)將兩個(gè)新的方程組消去y,即可得到關(guān)于x的一元二次方程.18、見(jiàn)解析【解析】
根據(jù)角平分線的定義可得∠ABF=∠CBF,由已知條件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根據(jù)余角的性質(zhì)可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可證得結(jié)論.【詳解】∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【點(diǎn)睛】本題考查了等腰三角形的判定、直角三角形的性質(zhì),根據(jù)余角的性質(zhì)證得∠AFB=∠BED是解題的關(guān)鍵.19、(1)1;(2)2a+2【解析】
(1)根據(jù)特殊角銳角三角函數(shù)值、絕對(duì)值的性質(zhì)即可求出答案;(2)先化簡(jiǎn)原式,然后將x的值代入原式即可求出答案.【詳解】解:(1)原式=﹣1+2﹣+2×=1;(2)原式=a2+2a+1+1﹣a2=2a+2.【點(diǎn)睛】本題考查學(xué)生的運(yùn)算能力,解題的關(guān)鍵是熟練運(yùn)用運(yùn)算法則,本題屬于基礎(chǔ)題型.20、(1)y1=-20x+1200,800;(2)15≤x≤40.【解析】
(1)根據(jù)圖中的已知點(diǎn)用待定系數(shù)法求出一次函數(shù)解析式(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入求出解析式,在已知范圍內(nèi)求出解即可.【詳解】解:(1)設(shè)y1=kx+b,把(0,1200)和(60,0)代入得解得,所以y1=-20x+1200,當(dāng)x=20時(shí),y1=-20×20+1200=800,(2)設(shè)y2=kx+b,把(20,0)和(60,1000)代入得則,所以y2=25x-500,當(dāng)0≤x≤20時(shí),y=-20x+1200,當(dāng)20<x≤60時(shí),y=y1+y2=-20x+1200+25x-500=5x+700,由題意解得該不等式組的解集為15≤x≤40所以發(fā)生嚴(yán)重干旱時(shí)x的范圍為15≤x≤40.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)一次函數(shù)和一元一次不等式的實(shí)際應(yīng)用能力,掌握一次函數(shù)和一元一次不等式的解法是解題的關(guān)鍵.21、(1)150;(2)詳見(jiàn)解析;(3).【解析】
(1)用A類人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);(2)用總?cè)藬?shù)分別減去A、C、D得到B類人數(shù),再計(jì)算出它所占的百分比,然后補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;(3)畫(huà)樹(shù)狀圖展示所有20種等可能的結(jié)果數(shù),再找出剛好抽到不同性別學(xué)生的結(jié)果數(shù),然后利用概率公式求解.【詳解】解:(1)15÷10%=150,所以共調(diào)查了150名學(xué)生;(2)喜歡“立定跳遠(yuǎn)”學(xué)生的人數(shù)為150﹣15﹣60﹣30=45,喜歡“立定跳遠(yuǎn)”的學(xué)生所占百分比為1﹣20%﹣40%﹣10%=30%,兩個(gè)統(tǒng)計(jì)圖補(bǔ)充為:(3)畫(huà)樹(shù)狀圖為:共有20種等可能的結(jié)果數(shù),其中剛好抽到不同性別學(xué)生的結(jié)果數(shù)為12,所以剛好抽到不同性別學(xué)生的概率【點(diǎn)睛】本題考查了列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.也考查了統(tǒng)計(jì)圖.22、見(jiàn)解析【解析】試題分析:證明簡(jiǎn)單的線段相等,可證
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年稅務(wù)會(huì)計(jì)咨詢合同
- 銀行網(wǎng)點(diǎn)租賃合同模板
- 空氣凈化設(shè)備租賃協(xié)議樣本
- 排水管道管涵施工合同
- 超市收銀區(qū)地磚鋪裝項(xiàng)目協(xié)議
- 醫(yī)院防雷施工合同
- 商場(chǎng)衛(wèi)生清潔工招聘合同
- 未婚夫婚前房產(chǎn)協(xié)議
- 養(yǎng)老院租賃協(xié)議
- 通信工程商品混凝土施工協(xié)議
- 《大學(xué)物理學(xué)》精美課件(全)
- 規(guī)范權(quán)力運(yùn)行方面存在問(wèn)題及整改措施范文(五篇)
- 減壓孔板計(jì)算
- 博物館學(xué)概論課件:博物館與觀眾
- 著色滲透探傷檢測(cè)報(bào)告
- 反恐培訓(xùn)內(nèi)容
- 配套課件-計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)實(shí)踐教程-王秋華
- 農(nóng)產(chǎn)品質(zhì)量安全檢測(cè)機(jī)構(gòu)考核評(píng)審細(xì)則
- 裝修申請(qǐng)審批表
- 建筑施工安全檢查標(biāo)準(zhǔn)jgj59-2023
- 2023年大學(xué)生《思想道德與法治》考試題庫(kù)附答案(712題)
評(píng)論
0/150
提交評(píng)論