2025屆江蘇省蘇州市梁豐初級中學九上數學開學綜合測試模擬試題【含答案】_第1頁
2025屆江蘇省蘇州市梁豐初級中學九上數學開學綜合測試模擬試題【含答案】_第2頁
2025屆江蘇省蘇州市梁豐初級中學九上數學開學綜合測試模擬試題【含答案】_第3頁
2025屆江蘇省蘇州市梁豐初級中學九上數學開學綜合測試模擬試題【含答案】_第4頁
2025屆江蘇省蘇州市梁豐初級中學九上數學開學綜合測試模擬試題【含答案】_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共8頁2025屆江蘇省蘇州市梁豐初級中學九上數學開學綜合測試模擬試題題號一二三四五總分得分批閱人A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,正方形ABCD的周長是16,P是對角線AC上的個動點,E是CD的中點,則PE+PD的最小值為()A.2 B.2 C.2 D.42、(4分)如圖,在四邊形ABCD中,下列條件不能判定四邊形ABCD是平行四邊形的是()A.AB//DC,AD//BC B.AB=CD,AD=BCC.AD//DC,AB=DC D.AB//DC,AB=DC3、(4分)已知:在直角坐標系中,點A,B的坐標分別是(1,0),(0,3),將線段AB平移,平移后點A的對應點A′的坐標是(2,﹣1),那么點B的對應點B′的坐標是()A.(2,1) B.(2,3) C.(2,2) D.(1,2)4、(4分)如圖,四邊形和四邊形都是正方形,邊在軸上,邊在軸上,點在邊上,反比例函數,在第二象限的圖像經過點,則正方形與正方形的面積之差為()A.6 B.8 C.10 D.125、(4分)順次連結對角線相等的四邊形各邊中點所得的四邊形必是()A.菱形 B.矩形 C.正方形 D.無法確定6、(4分)如圖,數軸上點A,B分別對應1,2,過點B作PQ⊥AB,以點B為圓心,AB長為半徑畫弧,交PQ于點C,以點A為圓心,AC長為半徑畫弧,交數軸于點M,則點M對應的數是()A. B. C.+1 D.+17、(4分)如圖,在矩形ABCD中,對角線AC,BD交于點O,已知∠AOD=120°,AB=2,則矩形的面積為()A.2 B.4 C. D.38、(4分)“垃圾分類,從我做起”,以下四幅圖案分別代表四類可回收垃圾,其中是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)當=______時,分式的值為0.10、(4分)某班有40名同學去看演出,購買甲、乙兩種票共用去370元,其中甲種票每張10元,乙種票每張8元,設購買了甲種票張,乙種票張,由此可列出方程組為______.11、(4分)已知杭州市某天六個整點時的氣溫繪制成的統(tǒng)計圖,則這六個整點時氣溫的中位數是.12、(4分)平行四邊形ABCD中,∠A=80°,則∠C=°.13、(4分)在菱形ABCD中,,,則對角線AC的長為________.三、解答題(本大題共5個小題,共48分)14、(12分)甲、乙兩班各推選10名同學進行投籃比賽,按照比賽規(guī)則,每人各投了10個球,兩個班選手的進球數統(tǒng)計如表,請根據表中數據解答下列問題進球數/個1098765甲111403乙012502(1)分別寫出甲、乙兩班選手進球數的平均數、中位數與眾數;(2)如果要從這兩個班中選出一個班級參加學校的投籃比賽,爭取奪得總進球團體的第一名,你認為應該選擇哪個班?如果要爭取個人進球數進入學校前三名,你認為應該選擇哪個班?15、(8分)已知:如圖,△OAB,點O為原點,點A、B的坐標分別是(2,1)、(﹣2,4).(1)若點A、B都在一次函數y=kx+b圖象上,求k,b的值;(2)求△OAB的邊AB上的中線的長.16、(8分)如圖,AD是△ABC的中線,AE∥BC,BE交AD于點F,交AC于G,F是AD的中點.(1)求證:四邊形ADCE是平行四邊形;(2)若EB是∠AEC的角平分線,請寫出圖中所有與AE相等的邊.17、(10分)如圖,在等腰梯形ABCD中,,,,.點Р從點B出發(fā)沿折線段以每秒5個單位長的速度向點C勻速運動;點Q從點C出發(fā)沿線段CB方向以每秒3個單位長的速度勻速運動,過點O向上作射線OKIBC,交折線段于點E.點P、O同時開始運動,為點Р與點C重合時停止運動,點Q也隨之停止.設點P、Q運動的時間是t秒.(1)點P到達終點C時,求t的值,并指出此時BQ的長;(2)當點Р運動到AD上時,t為何值能使?(3)t為何值時,四點P、Q、C、E成為一個平行四邊形的頂點?(4)能為直角三角形時t的取值范圍________.(直接寫出結果)(注:備用圖不夠用可以另外畫)18、(10分)如圖,直線的解析式為,且與軸交于點D,直線經過點、,直線、交于點C.(1)求直線的解析表達式;(2)求的面積;(3)在直線上存在異于點C的另一點P,使得與的面積相等,請求出點P的坐標.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值=___.20、(4分)如圖,在矩形中,,點分別在平行四邊形各邊上,且AE=CG,BF=DH,四邊形的周長的最小值為______.21、(4分)如圖,在矩形中,,.若點是邊的中點,連接,過點作交于點,則的長為______.22、(4分)如圖,在平行四邊形ABCD中,E為AD邊上一點,且AE=AB,若∠BED=160°,則∠D的度數為__________.23、(4分)如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標是.二、解答題(本大題共3個小題,共30分)24、(8分)已知關于x的函數y=(m+3)x|m+2|是正比例函數,求m的值.25、(10分)如圖,△ABC中,CD⊥AB于D,若AD=2BD,AC=3,BC=2,求BD的長.26、(12分)如圖,在△ABC中,點D是AB邊的中點,點E是CD邊的中點,過點C作CF∥AB交AE的延長線于點F,連接BF.(1)求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.

參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、A【解析】

由于點B與D關于AC對稱,所以連接BE,與AC的交點即為P點.此時PE+PD=BE最小,而BE是直角△CBE的斜邊,利用勾股定理即可得出結果.【詳解】解:如圖,連接BE,設BE與AC交于點P',∵四邊形ABCD是正方形,∴點B與D關于AC對稱,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.即P在AC與BE的交點上時,PD+PE最小,即為BE的長度.∴直角△CBE中,∠BCE=90°,BC=4,CE=CD=2,∴.故選:A.本題題考查了軸對稱中的最短路線問題,要靈活運用正方形的性質、對稱性是解決此類問題的重要方法,找出P點位置是解題的關鍵2、C【解析】

根據平行四邊形的5種判定方法分別進行分析即可.【詳解】A.根據兩組對邊分別平行,是平行四邊形可判定四邊形ABCD是平行四邊形,故此選項不合題意;B.根據兩組對邊分別相等,是平行四邊形可判定四邊形ABCD是平行四邊形,故此選項不合題意;C.不能判定判定四邊形ABCD是平行四邊形,故此選項符合題意;D.根據一組對邊平行且相等,是平行四邊形可判定四邊形ABCD是平行四邊形,故此選項不合題意;故選C.此題考查平行四邊形的判定,解題關鍵在于掌握判定定理3、D【解析】

根據點A、A′的坐標確定出平移規(guī)律,然后根據規(guī)律求解點B′的坐標即可.【詳解】∵A(1,0)的對應點A′的坐標為(2,﹣1),∴平移規(guī)律為橫坐標加1,縱坐標減1,∵點B(0,3)的對應點為B′,∴B′的坐標為(1,2).故選D.本題考查了坐標與圖形變化?平移,平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減,本題根據對應點的坐標確定出平移規(guī)律是解題的關鍵.4、B【解析】

設正方形AOBC的邊長為a,正方形CDEF的邊長為b,則E(a-b,a+b),根據E在反比例函數上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面積之差.【詳解】設正方形AOBC的邊長為a,正方形CDEF的邊長為b,則E(a-b,a+b),∵E在反比例函數上∴(a+b)(a-b)=8,即a2-b2=8∴S正方形AOBC-S正方形CDEF=a2-b2=8故選B.此題主要考查反比例函數的圖像,解題的關鍵是根據題意找到E點坐標.5、A【解析】

作出圖形,根據三角形的中位線平行于第三邊并且等于第三邊的一半可得EF=AC,GH=AC,HE=BD,FG=BD,再根據四邊形的對角線相等可知AC=BD,從而得到EF=FG=GH=HE,再根據四條邊都相等的四邊形是菱形即可得解.【詳解】解:如圖,E、F、G、H分別是四邊形ABCD的邊AB、BC、CD、DA的中點,連接AC、BD,根據三角形的中位線定理得,EF=AC,GH=AC,HE=BD,FG=BD,∵四邊形ABCD的對角線相等,∴AC=BD,所以,EF=FG=GH=HE,所以,四邊形EFGH是菱形.故選:A.本題考查菱形的判定和三角形的中位線定理,解題的關鍵是掌握菱形的判定和三角形的中位線定理.6、C【解析】

根據題意求出BC,根據勾股定理求出AC,得到AM的長,根據數軸的性質解答.【詳解】解:由題意得,BC=AB=1,

由勾股定理得,AC=,

則AM=,

∴點M對應的數是+1,

故選:C.本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a1+b1=c1.7、B【解析】

由矩形的性質得出∠ABC=90°,OA=OB,再證明△AOB是等邊三角形,得出OA=AB,求出AC,然后根據勾股定理即可求出BC,進而得出矩形面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面積=AB?BC=4;故選B.本題考查了矩形的性質、等邊三角形的判定與性質以及勾股定理;熟練掌握矩形的性質,證明三角形是等邊三角形是解決問題的關鍵.8、C【解析】

根據中心對稱圖形的定義:在平面內,把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關于這個點成中心對稱,逐一判定即可.【詳解】A選項,是軸對稱圖形,不符合題意;B選項,是軸對稱圖形,不符合題意;C選項,是中心對稱圖形,符合題意;D選項,是軸對稱圖形,不符合題意;故選:C.此題主要考查對中心對稱圖形的理解,熟練掌握,即可解題.二、填空題(本大題共5個小題,每小題4分,共20分)9、-2【解析】

分式的值為1的條件是:(1)分子=1;(2)分母≠1.兩個條件需同時具備,缺一不可.【詳解】分式的值為1,即|x|-2=1,x=±2,∵x-2≠1,∴x≠2,即x=-2,故當x=-2時,分式的值為1.故答案為:-2.此題考查了分式的值為1的條件.由于該類型的題易忽略分母不為1這個條件,所以常以這個知識點來命題.10、【解析】

本題有兩個相等關系:購買甲種票的人數+購買乙種票的人數=40;購買甲種票的錢數+購買乙種票的錢數=370,再根據上述的等量關系列出方程組即可.【詳解】解:由購買甲種票的人數+購買乙種票的人數=40,可得方程;由購買甲種票的錢數+購買乙種票的錢數=370,可得,故答案為.本題考查了二元一次方程組的應用,認真審題、找準蘊含在題目中的等量關系是解決問題的關鍵,一般來說,設兩個未知數,需要尋找兩個等量關系.11、15.6【解析】試題分析:此題考查了折線統(tǒng)計圖和中位數,掌握中位數的定義是本題的關鍵,中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(或最中間兩個數的平均數),叫做這組數據的中位數.把這些數從小到大排列為:4.5,10.5,15.3,15.9,19.6,20.1,最中間的兩個數的平均數是(15.3+15.9)÷2=15.6(℃),則這六個整點時氣溫的中位數是15.6℃.考點:折線統(tǒng)計圖;中位數12、1【解析】試題分析:利用平行四邊形的對角相等,進而求出即可.解:∵四邊形ABCD是平行四邊形,∴∠A=∠C=1°.故答案為:1.13、1【解析】

由菱形的性質可得AB=BC=1,∠DAB+∠ABC=180°,可得∠ABC=10°,可證△ABC是等邊三角形,可得AC=1.【詳解】如圖,∵四邊形ABCD是菱形∴AB=BC=1,∠DAB+∠ABC=180°∴∠ABC=10°,且AB=BC∴△ABC是等邊三角形∴AC=AB=1故答案為:1本題考查了菱形的性質,等邊三角形的判定和性質,熟練運用菱形的性質是本題的關鍵.三、解答題(本大題共5個小題,共48分)14、(1)甲班選手進球數的平均數為7,中位為7,眾數為7;乙班選手進球數的平均數為7,中位為7,眾數為7;(2)要爭取奪取總進球團體第一名,應選乙班;要進入學校個人前3名,應選甲班.【解析】

(1)利用平均數、中位數和眾數的定義直接求出;(2)根據方差和個人發(fā)揮的最好成績進行選擇.【詳解】解:(1)甲班選手進球數的平均數為7,中位為7,眾數為7;乙班選手進球數的平均數為7,中位為7,眾數為7;(2)甲班S12=[(10﹣7)2+(9﹣7)2+(8﹣7)2+1×(7﹣7)2+0×(6﹣7)2+3×(5﹣7)2]=2.6,乙班S22=[0×(10﹣7)2+(9﹣7)2+2×(8﹣7)2+5×(7﹣7)2+(6﹣7)2+2×(5﹣7)2]=1.1.∵甲方差>乙方差,∴要爭取奪取總進球團體第一名,應選乙班.∵甲班有一位百發(fā)百中的出色選手,∴要進入學校個人前3名,應選甲班.本題考查了平均數,中位數,方差的意義.平均數表示一組數據的平均程度.中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(最中間兩個數的平均數);方差是用來衡量一組數據波動大小的量.15、(1)k=﹣,b=;(2)AB邊上的中線長為.【解析】

(1)由A、B兩點的坐標利用待定系數法可求得k、b的值;(2)由A、B兩點到y(tǒng)軸的距離相等可知直線AB與y軸的交點即為線段AB的中點,利用(1)求得的解析式可求得中線的長.【詳解】(1)∵點A、B都在一次函數y=kx+b圖象上,∴把(2,1)、(﹣2,4)代入可得,解得,∴k=﹣,b=;(2)如圖,設直線AB交y軸于點C,∵A(2,1)、B(﹣2,4),∴C點為線段AB的中點,由(1)可知直線AB的解析式為y=﹣x+,令x=0可得y=,∴OC=,即AB邊上的中線長為.此題考查一次函數圖象上點的坐標特征,解題關鍵在于利用待定系數法求解16、見解析【解析】試題分析:(1)由已知條件易證△AFE≌△DFB,從而可得AE=BD=DC,結合AE∥BC即可證得四邊形ADCE是平行四邊形;(2)由(1)可知,AE=BD=CD;由BE平分∠AEC,結合AE∥BC可證得△BCE是等腰三角形,從而可得EC=BC,結合AD=EC、AF=DF,可得AF=DF=AE;由此即可得與AE相等的線段有BD、CD、AF、DF共四條.試題解析:(1)∵AE∥BC,∴∠AEF=∠DBF,∠EAF=∠FDB,∵點F是AD的中點,∴AF=DF,∴△AFE≌△DFB,∴AE=CD,∵AD是△ABC的中線,∴DC=AD,∴AE=DC,又∵AE∥BC,∴四邊形ADCE是平行四邊形;(2)∵BE平分∠AEC,∴∠AEB=∠CEB,∵AE∥BC,∴∠AEB=∠EBC,∴∠CEB=∠EBC,∴EC=BC,∵由(1)可知,AD=EC,BD=DC=AE,∴AD=BC,又∵AF=DF,∴AF=DF=BD=DC=AE,即圖中等于AE的線段有4條,分別是:AF、DF、BD、DC.17、(2)秒,;(2)詳見解析;(3);(4)或.【解析】

(2)把BA,AD,DC它們的和求出來再除以速度每秒5個單位就可以求出t的值,然后也可以求出BQ的長;(2)如圖2,若PQ∥DC,又AD∥BC,則四邊形PQCD為平行四邊形,從而PD=QC,用t分別表示QC,BA,AP,然后就可以得出關于t的方程,解方程就可以求出t;(3)分情況討論,當P在BA上運動時,E在CD上運動.0≤t≤20,QC的長度≤30,PE的長度>AD=75,QC<PE,此時不能構成以P、Q、C、E為頂點的平行四邊形;當P點運動到AD上,E在AD上,且P在E的左側時,P、Q、C、E為頂點的四邊形可能是平行四邊形,根據平行四邊形的性質建立方程求出其解就可以得出結論;當P在E點的右側且在AD上時,t≤25,P、Q、C、E為直角梯形,當P在CD上,E在AD上QE與PC不平行,P、Q、C、E不可能為平行四邊形,(4)①當點P在BA(包括點A)上,即0<t≤20時,如圖2.過點P作PG⊥BC于點G,則PG=PB?sinB=4t,又有QE=4t=PG,易得四邊形PGQE為矩形,此時△PQE總能成為直角三角形②當點P、E都在AD(不包括點A但包括點D)上,即20<t≤25時,如圖2.由QK⊥BC和AD∥BC可知,此時,△PQE為直角三角形,但點P、E不能重合,即5t-50+3t-30≠75,解得t≠.③當點P在DC上(不包括點D但包括點C),即25<t≤35時,如圖3.由ED>25×3-30=45,可知,點P在以QE=40為直徑的圓的外部,故∠EPQ不會是直角.由∠PEQ<∠DEQ,可知∠PEQ一定是銳角.對于∠PQE,∠PQE≤∠CQE,只有當點P與C重合,即t=35時,如圖4,∠PQE=90°,△PQE為直角三角形.【詳解】解:(2)t=(50+75+50)÷5=35(秒)時,點P到達終點C,此時,QC=35×3=205,∴BQ的長為235?205=30.(2)如圖2,若PQ∥DC,∵AD∥BC,∴四邊形PQCD為平行四邊形,∴PD=QC,由QC=3t,BA+AP=5t得50+75?5t=3t,解得t=.∴當t=時,PQ∥DC.(3)當P在BA上運動時,E在CD上運動.0?t?20,QC的長度?30,PE的長度>AD=75,QC<PE,此時不能構成以P、Q、C.E為頂點的平行四邊形;當P點運動到AD上,E在AD上,且P在E的左側時,P、Q、C.E為頂點的四邊形是平行四邊形,如圖5,∴PE=QC.如圖2,作DH⊥BC于H,AG⊥BC于G,∠AGB=∠DHC=90°∴四邊形AGHD是矩形,∴GH=AD=75.AG=DH.在△ABG和△DCH中,∴△ABG≌△DCH,∴BG=CH=(235?75)=30,∴ED=3(t?20)∵AP=5t?50,∴PE=75?(5t?50)?3(t?20)=255?8t.∵QC=3t,∴255?8t=3t,t=.當P在E點的右側且在AD上時,t?25,P、Q、C.E為直角梯形,當P在CD上,E在AD上QE與PC不平行,P、Q、C.E不可能為平行四邊形,∴t=;(4)①當點P在BA(包括點A)上,即0<t?20時,如圖2.過點P作PG⊥BC于點G,則PG=PB?sinB=4t,又有QE=4t=PG,易得四邊形PGQE為矩形,此時△PQE總能成為直角三角形。②當點P、E都在AD(不包括點A但包括點D)上,即20<t?25時,如圖2.由QK⊥BC和AD∥BC可知,此時,△PQE為直角三角形,但點P、E不能重合,即5t?50+3t?30≠75,解得t≠.③當點P在DC上(不包括點D但包括點C),即25<t?35時,如圖3.由ED>25×3?30=45,可知,點P在以QE=40為直徑的圓的外部,故∠EPQ不會是直角。由∠PEQ<∠DEQ,可知∠PEQ一定是銳角對于∠PQE,∠PQE?∠C,只有當點P與C重合,即t=35時,如圖4,∠PQE=90°,△PQE為直角三角形。綜上所述,當△PQE為直角三角形時,t的取值范圍是0<t?25且t≠或t=35.故答案為:0<t?25且t≠或t=35.本題考查四邊形綜合題,熟練掌握四邊形的基本性質及計算法則是解題關鍵.18、(1);(2);(3)P(6,3).【解析】試題分析:(1)利用待定系數法求直線的解析表達式;(2)由方程組得到C(2,﹣3),再利用x軸上點的坐標特征確定D點坐標,然后根據三角形面積公式求解;(3)由于△ADP與△ADC的面積相等,根據三角形面積公式得到點D與點C到AD的距離相等,則D點的縱坐標為3,對于函數,計算出函數值為3所對應的自變量的值即可得到D點坐標.試題解析:(1)設直線的解析表達式為,把A(4,0)、B(3,)代入得:,解得:,所以直線的解析表達式為;(2)解方程組:,得:,則C(2,﹣3);當y=0時,,解得x=1,則D(1,0),所以△ADC的面積=×(4﹣1)×3=;(3)因為點D與點C到AD的距離相等,所以D點的縱坐標為3,當y=3時,,解得x=6,所以D點坐標為(6,3).考點:兩條直線相交或平行問題.一、填空題(本大題共5個小題,每小題4分,共20分)19、1.【解析】

作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出CP、PB,根據勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M為BC中點,∴Q為AB中點,∵N為CD中點,四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴NQ=BC,∵四邊形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=1,即NQ=1,∴MP+NP=QP+NP=QN=1,故答案為1本題考查軸對稱-最短路線問題;菱形的性質.20、20【解析】

作點E關于BC的對稱點E′,連接E′G交BC于點F,此時四邊形EFGH周長取最小值,過點G作GG′⊥AB于點G′,由對稱結合矩形的性質可知:E′G′=AB,GG′=AD,利用勾股定理即可求出E′G的長度,進而可得出四邊形EFGH周長的最小值【詳解】作點E關于BC的對稱點E′,連接E′G交BC于點F,此時四邊形EFGH周長取最小值,EF=E'F,過點G作GG′⊥AB于點G′,如圖所示AE=CG.BE=BE′E′G′=AB=8,GG′=AD=6E`G=∵C四邊形EFGH=2(GF+EF)=2E′G=20此題考查矩形的性質,勾股定理,解題關鍵在于作輔助線21、【解析】

根據S△ABE=S矩形ABCD=3=?AE?BF,先求出AE,再求出BF即可.【詳解】解:如圖,連接BE.

∵四邊形ABCD是矩形,

∴AB=CD=2,BC=AD=3,∠D=90°,

在Rt△ADE中,AE=∵S△ABE=S矩形ABCD=3=?AE?BF,

∴BF=.故答案為:.本題考查矩形的性質、勾股定理、三角形的面積公式等知識,解題關鍵是靈活運用所學知識解決問題,用面積法解決有關線段問題是常用方法.22、40°.【解析】

根據平行四邊形的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論