2025屆天津市新四區(qū)示范校高一上數(shù)學期末達標檢測模擬試題含解析_第1頁
2025屆天津市新四區(qū)示范校高一上數(shù)學期末達標檢測模擬試題含解析_第2頁
2025屆天津市新四區(qū)示范校高一上數(shù)學期末達標檢測模擬試題含解析_第3頁
2025屆天津市新四區(qū)示范校高一上數(shù)學期末達標檢測模擬試題含解析_第4頁
2025屆天津市新四區(qū)示范校高一上數(shù)學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆天津市新四區(qū)示范校高一上數(shù)學期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.體育老師記錄了班上10名同學1分鐘內(nèi)的跳繩次數(shù),得到如下數(shù)據(jù):88,94,96,98,98,99,100,101,101,116.這組數(shù)據(jù)的60%分位數(shù)是()A.98 B.99C.99.5 D.1002.設(shè)函數(shù)若任意給定的,都存在唯一的非零實數(shù)滿足,則正實數(shù)的取值范圍為()A. B.C. D.3.當時,在同一坐標系中,函數(shù)與的圖像是()A. B.C. D.4.設(shè)平面向量滿足,且,則的最大值為A.2 B.3C. D.5.已知函數(shù),則函數(shù)的零點個數(shù)是A.1 B.2C.3 D.46.已知角是的內(nèi)角,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件7.如圖,質(zhì)點在單位圓周上逆時針運動,其初始位置為,角速度為2,則點到軸距離關(guān)于時間的函數(shù)圖象大致為()A. B.C. D.8.已知函數(shù),且,則()A. B.C. D.9.為慶祝深圳特區(qū)成立40周年,2020年10月11日深圳無人機精英賽總決賽在光明區(qū)舉行,全市共39支隊伍參加,下圖反映了某學校代表隊制作的無人機載重飛行從某時刻開始15分鐘內(nèi)的速度(單位:米/分)與時間x(單位:分)的關(guān)系.若定義"速度差函數(shù)"u(x)為無人機在時間段為[0,x]內(nèi)的最大速度與最小速度的差,則u(x)的圖象為()A B.C. D.10.將函數(shù)圖象向右平移個單位得到函數(shù)的圖象,已知的圖象關(guān)于原點對稱,則的最小正值為()A.2 B.3C.4 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.已知是定義在R上的偶函數(shù),且在上單調(diào)遞減,若(且),則a的取值范圍為_____________.12.將函數(shù)的圖象向右平移個單位,再將圖象上每一點的橫坐標縮短到原來的倍,得到函數(shù)的圖象,則函數(shù)的解析式為____________13.已知函數(shù),若有解,則m的取值范圍是______14.已知向量,,,則=_____.15.已知函數(shù)的部分圖象如圖所示,則___________16.已知集合,則______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,求,的值.18.已知的三個頂點是,直線過點且與邊所在直線平行.(1)求直線的方程;(2)求的面積.19.十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃,2020年某企業(yè)計劃引進新能源汽車生產(chǎn)設(shè)備看,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛)需另投入成本y(萬元),且由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完(1)求出2020年的利潤S(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額減去成本)(2)當2020年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤20.證明:函數(shù)是奇函數(shù).21.2022年是蘇頌誕辰1001周年,蘇頌發(fā)明的水運儀象臺被譽為世界上最早的天文鐘.水運儀象臺的原動輪叫樞輪,是一個直徑約3.4米的水輪,它轉(zhuǎn)一圈需要30分鐘.如圖,退水壺內(nèi)水面位于樞輪中心下方1.19米處,當點P從樞輪最高處隨樞輪開始轉(zhuǎn)動時,打開退水壺出水口,壺內(nèi)水位以每分鐘0.017米的速度下降,將樞輪轉(zhuǎn)動視為勻速圓周運動.以樞輪中心為原點,水平線為x軸建立平面直角坐標系,令P點縱坐標為,水面縱坐標為,P點轉(zhuǎn)動經(jīng)過的時間為x分鐘.(參考數(shù)據(jù):,,)(1)求,關(guān)于x的函數(shù)關(guān)系式;(2)求P點進入水中所用時間的最小值(單位:分鐘,結(jié)果取整數(shù))

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)分位數(shù)的定義即可求得答案.【詳解】這組數(shù)據(jù)的60%分位數(shù)是.2、A【解析】結(jié)合函數(shù)的圖象及值域分析,當時,存在唯一的非零實數(shù)滿足,然后利用一元二次不等式的性質(zhì)即可得結(jié)論.【詳解】解:因為,所以由函數(shù)的圖象可知其值域為,又時,值域為;時,值域為,所以的值域為時有兩個解,令,則,若存在唯一的非零實數(shù)滿足,則當時,,與一一對應(yīng),要使也一一對應(yīng),則,,任意,即,因為,所以不等式等價于,即,因,所以,所以,又,所以正實數(shù)的取值范圍為.故選:A.3、D【解析】根據(jù)指數(shù)型函數(shù)和對數(shù)型函數(shù)單調(diào)性,判斷出正確選項.【詳解】由于,所以為上的遞減函數(shù),且過;為上的單調(diào)遞減函數(shù),且過,故只有D選項符合.故選:D.【點睛】本小題主要考查指數(shù)型函數(shù)、對數(shù)型函數(shù)單調(diào)性判斷,考查函數(shù)圖像的識別,屬于基礎(chǔ)題.4、C【解析】設(shè),∵,且,∴∵,當且僅當與共線同向時等號成立,∴的最大值為.選C點睛:由于向量,且,因此向量確定,這是解題的基礎(chǔ)也是關(guān)鍵.然后在此基礎(chǔ)上根據(jù)向量模的三角不等式可得的范圍,解題時要注意等號成立的條件5、A【解析】設(shè),則函數(shù)等價為,由,轉(zhuǎn)化為,利用數(shù)形結(jié)合或者分段函數(shù)進行求解,即可得到答案【詳解】由題意,如圖所示,設(shè),則函數(shù)等價為,由,得,若,則,即,不滿足條件若,則,則,滿足條件,當時,令,解得(舍去);當時,令,解得,即是函數(shù)的零點,所以函數(shù)的零點個數(shù)只有1個,故選A【點睛】本題主要考查了函數(shù)零點問題的應(yīng)用,其中解答中利用換元法結(jié)合分段函數(shù)的表達式以及數(shù)形結(jié)合是解決本題的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎(chǔ)題.6、C【解析】在中,由求出角A,再利用充分條件、必要條件的定義直接判斷作答.【詳解】因角是的內(nèi)角,則,當時,或,即不一定能推出,若,則,所以“”是“”的必要不充分條件.故選:C7、A【解析】利用角速度先求出時,的值,然后利用單調(diào)性進行判斷即可【詳解】因為,所以由,得,此時,所以排除CD,當時,越來越小,單調(diào)遞減,所以排除B,故選:A8、B【解析】構(gòu)造函數(shù),判斷的單調(diào)性和奇偶性,由此化簡不等式,即得.【詳解】∵函數(shù),令,則,∴的定義域為,,所以函數(shù)為奇函數(shù),又,當增大時,增大,即在上遞增,由,可得,即,∴,∴,即.故選:B.9、D【解析】根據(jù),“速度差函數(shù)”的定義,分,、,、,、,四種情況,分別求得函數(shù)的解析式,從而得到函數(shù)的圖象【詳解】解:由題意可得,當,時,翼人做勻加速運動,,“速度差函數(shù)”當,時,翼人做勻減速運動,速度從160開始下降,一直降到80,當,時,翼人做勻減速運動,從80開始下降,,當,時,翼人做勻加速運動,“速度差函數(shù)”,結(jié)合所給的圖象,故選:10、B【解析】根據(jù)圖象平移求出g(x)解析式,g(x)為奇函數(shù),則g(0)=0,據(jù)此即可計算ω的取值.【詳解】根據(jù)已知,可得,∵的圖象關(guān)于原點對稱,所以,從而,Z,所以,其最小正值為3,此時故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)偶函數(shù)的性質(zhì),結(jié)合絕對值的性質(zhì)、對數(shù)函數(shù)的單調(diào)性,分類討論,求出a的取值范圍.【詳解】因為已知是定義在R上的偶函數(shù),所以由,又因為上單調(diào)遞減,所以有.當時,;當時,.故答案為:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性解不等式,考查了對數(shù)函數(shù)的單調(diào)性,考查了數(shù)學運算能力.12、【解析】利用函數(shù)的圖象變換規(guī)律,即可得到的解析式【詳解】函數(shù)的圖象向右平移個單位,可得到,再將圖象上每一點的橫坐標縮短到原來的倍,可得到.故.【點睛】本題考查了三角函數(shù)圖象的平移變換,屬于基礎(chǔ)題13、【解析】利用函數(shù)的值域,轉(zhuǎn)化方程的實數(shù)解,列出不等式求解即可.【詳解】函數(shù),若有解,就是關(guān)于的方程在上有解;可得:或,解得:或可得.故答案為.【點睛】本題考查函數(shù)與方程的應(yīng)用,考查轉(zhuǎn)化思想有解計算能力.14、【解析】先根據(jù)向量的減法運算求得,再根據(jù)向量垂直的坐標表示,可得關(guān)于的方程,解方程即可求得的值.【詳解】因為向量,,所以則即解得故答案為:【點睛】本題考查了向量垂直的坐標關(guān)系,屬于基礎(chǔ)題.15、【解析】由圖象可得最小正周期的值,進而可得,又函數(shù)圖象過點,利用即可求解.【詳解】解:由圖可知,因為,所以,解得,因為函數(shù)的圖象過點,所以,又,所以,故答案為:.16、【解析】∵∴,故答案為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】分角為第三和第四象限角兩種情況討論,結(jié)合同角三角函數(shù)的基本關(guān)系可得解.【詳解】因為,,所以是第三或第四象限角.由得.如果是第三象限角,那么,于是,從而;如果是第四象限角,那么,.綜上所述,當是第三象限角時,,;當是第四象限角時,,.【點睛】本題考查利用同角三角函數(shù)的基本關(guān)系求值,考查計算能力,屬于基礎(chǔ)題.18、(1)(2)【解析】(1)利用線線平行得到直線的斜率,由點斜式得直線方程;(2)利用點點距求得,利用點線距求得三角形的高,從而得到的面積.試題解析:(1)由題意可知:直線的斜率為:,∵,直線的斜率為-2,∴直線的方程為:,即.(2)∵,點到直線的距離等于點到直線的距離,∴,∴的面積.19、(1)(2)100百輛時,1300萬元【解析】(1)分和,由利潤=銷售額減去成本求解;(2)由(1)的結(jié)果,利用二次函數(shù)和對勾函數(shù)的性質(zhì)求解.【小問1詳解】解:由題意得當,,當時,,所以;【小問2詳解】當時,,當時,,當時,由對勾函數(shù),當時,,時,,時,即2020年產(chǎn)量為100百輛時,企業(yè)所獲利潤最大,且最大利潤為1300萬元20、證明見解析【解析】由奇偶性的定義證明即可得出結(jié)果.【詳解】中,,即,的定義域為,關(guān)于原點對稱,,,函數(shù)是奇函數(shù).21、(1),(2)13分鐘【解析】(1)按照題目所給定的坐標系分別

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論