




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省襄陽市東風中學2025屆數(shù)學高二上期末達標檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)對于任意的滿足,其中是函數(shù)的導(dǎo)函數(shù),則下列各式正確的是()A. B.C. D.2.如圖,在四面體中,,,,D為BC的中點,E為AD的中點,則可用向量,,表示為()A. B.C. D.3.拋物線的準線方程是,則a的值為()A.4 B.C. D.4.若正三棱柱的所有棱長都相等,D是的中點,則直線AD與平面所成角的正弦值為A. B.C. D.5.數(shù)列是公差不為零的等差數(shù)列,為其前n項和.若對任意的,都有,則的值不可能是()A. B.2C. D.36.如圖,空間四邊形OABC中,,,,點M在上,且滿足,點N為BC的中點,則()A. B.C. D.7.連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為8.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直9.已知點是橢圓上的任意點,是橢圓的左焦點,是的中點,則的周長為()A. B.C. D.10.定義在區(qū)間上的函數(shù)滿足:對恒成立,其中為的導(dǎo)函數(shù),則A.B.C.D.11.如圖,在長方體中,,E,F(xiàn)分別為的中點,則異面直線與所成角的余弦值為()A. B.C. D.12.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過橢圓上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.14.將全體正整數(shù)排成一個三角形數(shù)陣(如圖):按照以上排列的規(guī)律,第9行從左向右的第2個數(shù)為__________.15.在等比數(shù)列中,若,是方程兩根,則________.16.如圖,一個酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個表面積為的玻璃球,則球面上的點到杯底的最小距離為______cm;②在杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.(1)求證:平面;(2)求二面角的正弦值;(3)設(shè)為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.18.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若,且,討論函數(shù)的零點個數(shù).19.(12分)已知點A(-2,0),B(2,0),動點M滿足直線AM與BM的斜率之積為,記M的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線;(2)若直線和曲線C相交于E,F(xiàn)兩點,求.20.(12分)已知數(shù)列的前n項和為,且(1)求數(shù)列的通項公式;(2)若,數(shù)列的前n項和為,求的值21.(12分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請說明理由22.(10分)一個長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示(1)請將字母F,G,H標記在長方體相應(yīng)的頂點處(不需說明理由):(2)若且有下面兩個條件:①;②,請選擇其中一個條件,使得DF⊥平面,并證明你的結(jié)論
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】令,結(jié)合題意可得,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,進而得出,變形即可得出結(jié)果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C2、B【解析】利用空間向量的基本定理,用,,表示向量【詳解】因為是的中點,是的中點,,故選:B3、C【解析】先求得拋物線的標準方程,可得其準線方程,根據(jù)題意,列出方程,即可得答案.【詳解】由題意得拋物線的標準方程為,準線方程為,又準線方程是,所以,所以.故選:C4、A【解析】建立空間直角坐標系,得到相關(guān)點的坐標后求出直線的方向向量和平面的法向量,借助向量的運算求出線面角的正弦值【詳解】取AC的中點為坐標原點,建立如圖所示的空間直角坐標系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時首先要建立適當?shù)淖鴺讼?,得到相關(guān)點的坐標后借助向量的運算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運算處理.在解決空間角的問題時,首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯誤5、A【解析】由已知建立不等式組,可求得,再對各選項逐一驗證可得選項.【詳解】解:因為數(shù)列是公差不為零的等差數(shù)列,為其前n項和.對任意的,都有,所以,即,解得,則當時,,不成立;當時,,成立;當時,,成立;當時,,成立;所以的值不可能是,故選:A.6、B【解析】由空間向量的線性運算求解【詳解】由題意,又,,,∴,故選:B7、D【解析】計算出事件“t=12”的概率可判斷A;根據(jù)對立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數(shù)”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D8、B【解析】根據(jù)可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.9、A【解析】設(shè)橢圓另一個焦點為,連接,利用中位線的性質(zhì)結(jié)合橢圓的定義可求得結(jié)果.【詳解】在橢圓中,,,,如圖,設(shè)橢圓的另一個焦點為,連接,因為、分別為、的中點,則,則的周長為,故選:A.10、D【解析】分別構(gòu)造函數(shù),,,,利用導(dǎo)數(shù)研究其單調(diào)性即可得出【詳解】令,,,,恒成立,,,,函數(shù)在上單調(diào)遞增,,令,,,,恒成立,,函數(shù)在上單調(diào)遞減,,.綜上可得:,故選:D【點睛】函數(shù)的性質(zhì)是高考的重點內(nèi)容,本題考查的是利用函數(shù)的單調(diào)性比較大小的問題,通過題目中給定的不等式,分別構(gòu)造兩個不同的函數(shù)求導(dǎo)判出單調(diào)性從而比較函數(shù)值得大小關(guān)系.在討論函數(shù)的性質(zhì)時,必須堅持定義域優(yōu)先的原則.對于函數(shù)實際應(yīng)用問題,注意挖掘隱含在實際中的條件,避免忽略實際意義對定義域的影響11、A【解析】利用平行線,將異面直線的夾角問題轉(zhuǎn)化為共面直線的夾角問題,再解三角形.【詳解】取BC中點H,BH中點I,連接AI、FI、,因為E為中點,在長方體中,,所以四邊形是平行四邊形,所以所以,又因為F為的中點,所以,所以,則即為異面直線與所成角(或其補角).設(shè)AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯誤.故選:A.12、A【解析】構(gòu)造新函數(shù),以函數(shù)單調(diào)性把不等式轉(zhuǎn)化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調(diào)增函數(shù).由可得故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】相關(guān)點法求解軌跡方程.【詳解】設(shè),則,則,即,因為,代入可得,即的軌跡方程為.故答案為:14、38【解析】根據(jù)數(shù)陣的規(guī)律求得正確答案.【詳解】數(shù)陣第行有個數(shù),第行有個數(shù),并且數(shù)字從開始,每次遞增.前行共有個數(shù),第行從左向右的最后一個數(shù)是,所以第行從左向右的第個數(shù)為.故答案為:15、.【解析】由題意求得,,再結(jié)合等比數(shù)列的性質(zhì),即可求解.【詳解】由題意知,,是方程的兩根,可得,,又由,,所以,,可得,又由,所以.故答案為:.【點睛】本題主要考查了等比數(shù)列的通項公式,以及等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟練應(yīng)用等比數(shù)列的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、①.②.【解析】根據(jù)題意,,進而得,,故最小距離為;進而建立坐標系,得拋物線方程為,當杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,此時設(shè)玻璃球軸截面所在圓的方程為,進而只需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因為杯口放一個表面積為的玻璃球,所以球的半徑為,又因為杯口寬cm,所以如圖1所示,有,所以,所以,所以,又因為杯深8cm,即故最小距離為如圖1所示,建立直角坐標系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當杯內(nèi)放入一個小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點睛】本題考查拋物線的應(yīng)用,考查數(shù)學建模能力,運算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進而將問題轉(zhuǎn)化為拋物線上的點到圓心的距離大于等于半徑恒成立求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2);(3).【解析】(1)由已知證得,,,以為坐標原點,建立如圖所示的空間直角坐標系,根據(jù)向量垂直的坐標表示和線面垂直的判定定理可得證;(2)根據(jù)二面角的空間向量求解方法可得答案;(3)設(shè),表示點Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【詳解】(1)因為平面,平面,平面,所以,,又因為,則以為坐標原點,建立如圖所示的空間直角坐標系,由已知可得,,,,,,所以,,,因為,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作為平面的法向量,設(shè)平面的法向量因為,.所以,即,不妨設(shè),得.,又由圖示知二面角為銳角,所以二面角的正弦值為.(3)設(shè),即,,所以,即,因為直線與平面所成角的正弦值為,所以,即,解得,即.【點睛】本題考查利用空間向量求線面垂直、線面角、二面角的求法,向量法求二面角的步驟:建、設(shè)、求、算、?。?、建:建立空間直角坐標系,以三條互相垂直的垂線的交點為原點;2、設(shè):設(shè)所需點的坐標,并得出所需向量的坐標;3、求:求出兩個面的法向量;4、算:運用向量的數(shù)量積運算,求兩個法向量的夾角的余弦值;5、取:根據(jù)二面角的范圍和圖示得出的二面角是銳角還是鈍角,再取值.18、(1).(2)答案見解析.【解析】(1)求導(dǎo)函數(shù),求得,,由此可求得曲線在點處的切線方程;(2)求得導(dǎo)函數(shù),分和討論,當時,設(shè),求導(dǎo)函數(shù),分析導(dǎo)函數(shù)的符號,得出所令函數(shù)的單調(diào)性,從而得函數(shù)的單調(diào)性,根據(jù)零點存在定理可得答案.【小問1詳解】解:當時,,所以,故,,所以曲線在點處的切線方程為.【小問2詳解】解:依題意,則,當時,,所以在上單調(diào)遞增;當時,設(shè),此時,所以在上單調(diào)遞增,又,,所以存在,使得,且在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,在上單調(diào)遞減,在上單調(diào)遞增.又,所以當,即時,有唯一零點在區(qū)間上,當,即時,在上無零點;故當時,在上有1個零點;當時,在上無零點.19、(1),曲線是一個雙曲線,除去左右頂點(2)【解析】(1)設(shè),則的斜率分別為,,根據(jù)題意列出方程,化簡后即得C的方程,根據(jù)方程可以判定曲線類型,注意特殊點的去除;(2)聯(lián)立方程,利用韋達定理和弦長公式計算可得.【小問1詳解】解:設(shè),則的斜率分別為,,由已知得,化簡得,即曲線C的方程為,曲線一個雙曲線,除去左右頂點.【小問2詳解】解:聯(lián)立消去整理得,設(shè),,則,.20、(1);(2).【解析】(1)根據(jù)給定的遞推公式結(jié)合“當時,”探求相鄰兩項的關(guān)系計算作答.(2)由(1)的結(jié)論求出,再利用裂項相消法求出,即可作答.【小問1詳解】依題意,,,則當時,,于是得:,即,而當時,,即有,因此,,,所以數(shù)列是以2為首項,2為公比的等比數(shù)列,,所以數(shù)列的通項公式是.【小問2詳解】由(1)知,,從而有,所以.21、(1)2;(2)存在,.【解析】(1)對函數(shù)求導(dǎo),利用得的值;(2)討論和分離參數(shù),構(gòu)造新函數(shù)求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時,由或,所以函數(shù)的單調(diào)減區(qū)間為和要恒成立,即①當時,,則要恒成立,令,再令,所以在內(nèi)遞減,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 胸椎骨折脫位護理查房
- 金融安全團日活動
- 規(guī)范語言文字化課件
- 簡易個人購貨合同范本
- 舞美制作合同范本
- 出售建材銑刨機合同范本
- 財務(wù)管理資金成本結(jié)構(gòu)
- 工程頂棚租賃合同范本
- 本地出租門面合同范本
- 飯店入股合作合同范本
- 安徽省2024年中考道德與法治真題試卷(含答案)
- 《公路建設(shè)項目文件管理規(guī)程》
- 2023年北京按摩醫(yī)院招聘筆試真題
- 2024年山東省煙臺市初中學業(yè)水平考試地理試卷含答案
- 中國生殖支原體感染診療專家共識(2024年版)解讀課件
- 人教版小學三年級下期數(shù)學單元、期中和期末檢測試題
- 森林經(jīng)理學 課程設(shè)計
- 工會驛站驗收
- “雙減”政策(2023年陜西中考語文試卷非連續(xù)性文本閱讀題及答案)
- 【全友家居企業(yè)績效考核問題及其建議(論文8500字)】
- 職業(yè)技術(shù)學?!对朴嬎氵\維與開發(fā)(初級)》課程標準
評論
0/150
提交評論