




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省鄭州市外國語高中高二數學第一學期期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,,則與向量相等的是()A. B.C. D.2.數列,則是這個數列的第()A.項 B.項C.項 D.項3.由直線上的點向圓引切線,則切線長的最小值為()A. B.C.4 D.24.新冠肺炎疫情的發(fā)生,我國的三大產業(yè)均受到不同程度的影響,其中第三產業(yè)中的各個行業(yè)都面臨著很大的營收壓力.2020年7月國家統(tǒng)計局發(fā)布了我國上半年國內經濟數據,如圖所示,圖1為國內三大產業(yè)比重,圖2為第三產業(yè)中各行業(yè)比重下列關于我國上半年經濟數據的說法正確的是()A.第一產業(yè)的生產總值與第三產業(yè)中“其他服務業(yè)”的生產總值基本持平B.第一產業(yè)的生產總值超過第三產業(yè)中“金融業(yè)”的生產總值C.若“住宿和餐飲業(yè)”生產總值為7500億元,則“房地產”生產總值為22500億元D.若“金融業(yè)”生產總值為41040億元,則第二產業(yè)生產總值為166500億元5.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點;④兩條平行直線與間的距離為.以上四個命題中正確的命題個數為()A. B.C. D.6.在等差數列中,,則()A.9 B.6C.3 D.17.魏晉時期數學家劉徽首創(chuàng)割圓術,他在《九章算術》方田章圓田術中指出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術是一種無限與有限的轉化過程,比如在正數中的“”代表無限次重復,設,則可以利用方程求得,類似地可得到正數()A.2 B.3C. D.8.甲,乙、丙、丁、戊共5人隨機地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.9.已知等差數列的前n項和為,,,若(),則n的值為()A.15 B.14C.13 D.1210.函數,則曲線在點處的切線方程為()A. B.C. D.11.如圖,奧運五環(huán)由5個奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍、黑、紅環(huán),下面是黃,綠環(huán),整個造形為一個底部小的規(guī)則梯形.為迎接北京冬奧會召開,某機構定制一批奧運五環(huán)旗,已知該五環(huán)旗的5個奧林匹克環(huán)的內圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個相交的圓的圓心之間的距離為()A. B.2.8C. D.2.912.已知曲線,下列命題錯誤的是()A.若,則是橢圓,其焦點在軸上B.若,則是圓,其半徑為C.若,則是雙曲線,其漸近線方程為D.若,,為上任意一點,,為曲線的兩個焦點,則二、填空題:本題共4小題,每小題5分,共20分。13.希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.14.動點M在圓上移動,則M與定點連線的中點P的軌跡方程為___________.15.在單位正方體中,點E為AD的中點,過點B,E,的平面截該正方體所得的截面面積為______.16.已知圓,則圓心坐標為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)若,求的最大值;(2)若,求證:有且只有一個零點.18.(12分)如圖所示,在直三棱柱中,,,(1)求三棱柱的表面積;(2)求異面直線與所成角的大小(結果用反三角函數表示)19.(12分)已知數列的前n項和為,且.(1)求的通項公式;.(2)求數列的前n項和.20.(12分)已知拋物線:()的焦點為,點在上,點在的內側,且的最小值為(1)求的方程;(2)過點的直線與拋物線交于不同的兩點,,直線,(為坐標原點)分別交直線于點,記直線,,的斜率分別為,,,若,求的值21.(12分)2017年廈門金磚會晤期間產生碳排放3095噸.2018年起廈門市政府在下潭尾濕地生態(tài)公園通過種植紅樹林的方式中和會晤期間產生的碳排放,擬用20年時間將碳排放全部吸收,實現(xiàn)“零碳排放”目標,向世界傳遞低碳,環(huán)保辦會的積極信號,踐行金磚國家倡導的可持續(xù)發(fā)展精神據研究估算,紅樹林的年碳吸收量隨著林齡每年遞增2%,2018年公園已有的紅樹林年碳吸收量為130噸,如果從2019年起每年新種植紅樹林若干畝,新種植的紅樹林當年的年碳吸收量為m()噸.2018年起,紅樹林的年碳吸收量依次記,,,…(1)①寫出一個遞推公式,表示與之間的關系;②證明:是等比數列,并求的通項公式;(2)為了提前5年實現(xiàn)廈門會晤“零碳排放”的目標,m的最小值為多少?參考數據:,,22.(10分)已知函數,其中,.(1)當時,求曲線在點處切線方程;(2)求函數的單調區(qū)間.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據空間向量的線性運算法則——三角形法,準確運算,即可求解.【詳解】由題意,在平行六面體中,,可得.故選:A.2、A【解析】根據數列的規(guī)律,求出通項公式,進而求出是這個數列的第幾項【詳解】數列為,故通項公式為,是這個數列的第項.故選:A.3、D【解析】切點與圓心的連線垂直于切線,切線長轉化為直線上點與圓心連線和半徑的關系,利用點到直線的距離公式求出圓心與直線上點距離的最小值,結合勾股定理即可得出結果.【詳解】設為直線上任意一點,,切線長的最小值為:,故選:D.4、D【解析】根據扇形圖及柱形圖中的各產業(yè)與各行業(yè)所占比重,得到第三產業(yè)中“其他服務業(yè)”及“金融業(yè)”的生產總值占總生產總值的比重,進而比較出AB選項,利用“住宿和餐飲業(yè)”生產總值和“房地產”生產總值的比值,求出“房地產”生產總值,判斷出C選項,利用第三產業(yè)中“金融業(yè)”的生產總值與第二產業(yè)的生產總值比值,求出第二產業(yè)生產總值,判斷D選項.【詳解】A選項,第三產業(yè)中“其他服務業(yè)”的生產總值占總生產總值的,因為,所以第三產業(yè)中“其他服務業(yè)”的生產總值明顯高于第一產業(yè)的生產總值,A錯誤;B選項,第三產業(yè)中“金融業(yè)”的生產總值占總生產總值的,因為,故第一產業(yè)的生產總值少于第三產業(yè)中“金融業(yè)”的生產總值,B錯誤;“住宿和餐飲業(yè)”生產總值和“房地產”生產總值的比值為,若“住宿和餐飲業(yè)”生產總值為7500億元,則“房地產”生產總值為億元,故C錯誤;第三產業(yè)中“金融業(yè)”的生產總值占總生產總值的,與第二產業(yè)的生產總值比值為,若“金融業(yè)”生產總值為41040億元,則第二產業(yè)生產總值為166500億元,D正確.故選:D5、B【解析】由直線方程的性質依次判斷各命題即可得出結果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點斜式方程可知直線必過定點,則③正確;對于④,兩條平行直線與間的距離為,則④錯誤.故選:B.6、A【解析】直接由等差中項得到結果.詳解】由得.故選:A.7、A【解析】設,則,解方程可得結果.【詳解】設,則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關鍵點點睛:設是解題關鍵.8、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進行排列,然后丙、丁從3個空中選2個空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A9、B【解析】由已知條件列方程組求出,再由列方程求n的值【詳解】設等差數列的公差為,則由,,得,解得,因為,所以,即,解得或(舍去),故選:B10、D【解析】對函數求導,利用導數的幾何意義求出切線斜率即可計算作答.【詳解】依題意,,即有,而,則過點,斜率為1的直線方程為:,所以曲線在點處切線方程為.故選:D11、C【解析】根據題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點,連接,所以,,又因為,所以,所以即相鄰兩個相交的圓的圓心之間的距離為.故選:C12、D【解析】根據橢圓和雙曲線的性質以及定義逐一判斷即可.【詳解】曲線,若,則是橢圓,其焦點在軸上,故A正確;若,則,即是圓,半徑為,故B正確;若,則是雙曲線,當,則漸近線方程為,當,則漸近線方程為,故C正確;若,,則是雙曲線,其焦點在軸上,由雙曲線的定義可知,,故D錯誤;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉化為P點到另一個定點的距離,然后結合拋物線的定義容易求得的最小值【詳解】設P(x,y),由阿氏圓的定義可得即化簡得則設則由拋物線的定義可得當且僅當四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質,同時考查了阿氏圓定義的應用.還考查了學生利用轉化思想、方程思想等思想方法解題的能力.難度較大14、##【解析】設,中點,根據中點坐標公式求出,代入圓的標準方程即可得出結果.【詳解】設,中點,則,即,因為在圓上,代入得故答案為:.15、【解析】根據題意,取的中點,連接、、、,分析可得四邊形為平行四邊形,則要求的截面就是四邊形,進而可得為菱形,連接、,求出、的長,計算可得答案【詳解】根據題意,取的中點,連接、、、,易得,,則四邊形為平行四邊形,過點,,的截面就是,又由正方體為單位正方體,則,則為菱形,連接、,易得,,則,即要求截面的面積為,故答案為:16、【解析】將圓的一般方程配方程標準方程即可.【詳解】圓,即,它的圓心坐標是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)利用導數判斷原函數單調性,從而可求最值.(2)求導后發(fā)現(xiàn)導數中無參數,故單調性與(1)中所求一致,然后利用零點存在定理結合的范圍,以及函數單調性證明在定義域內有且只有一個零點.【小問1詳解】若,則,其定義域為,∴,由,得,∴當時,;當時,,∴在上單調遞增,在上單調遞減,∴【小問2詳解】證明:,由(Ⅰ)知在上單調遞增,在上單調遞誠,∵,∴當時,,故在上無零點;當時,,∵且,∴在上有且只有一個零點.綜上,有且只有一個零點.18、(1);(2)【解析】(1)利用S=2S△ABC+S側,可得三棱柱ABC﹣A1B1C1的表面積S;(2)連接BC1,確定∠BA1C1就是異面直線A1B與AC所成的角(或其補角),在△A1BC1中,利用余弦定理可求結論【詳解】(1)在△ABC中,因為AB=2,AC=4,∠ABC=90°,所以BC=.S△ABC=AB×BC=2所以S=2S△ABC+S側=4+(2+2+4)×4=24+12(2)連接BC1,因為AC∥A1C1,所以∠BA1C1就是異面直線A1B與AC所成的角(或其補角)在△A1BC1中,A1B=2,BC1=2,A1C1=4,由余弦定理可得cos∠BA1C1=,所以∠BA1C1=arccos,即異面直線A1B與AC所成角的大小為arccos【點睛】本題考查三棱柱的表面積,考查線線角,解題的關鍵是正確作出線線角,屬于中檔題19、(1);(2).【解析】(1)根據給定條件結合當時,探求數列的性質即可計算作答.(2)由(1)求出,再利用錯位相減法計算作答.小問1詳解】依題意,當時,因為,則,當時,,解得,于是得數列是以1為首項,為公比的等比數列,則,所以的通項公式是.【小問2詳解】由(1)可知,,則,因此,兩式相減得:,于是得,所以數列的前n項和.20、(1)(2)【解析】(1)先求出拋物線的準線,作于由拋物線的定義,可得,從而當且僅當,,三點共線時取得最小,得出答案.(2)設,,設:與拋物線方程聯(lián)立,得出韋達定理,設出直線的方程分別與直線的方程聯(lián)立得出點的坐標,進一步得到,的表達式,由條件可得答案.【小問1詳解】的準線為:,作于,則,所以,因為點在的內側,所以當且僅當,,三點共線時取得最小值,所以,解得,所以的方程為【小問2詳解】由題意可知的斜率一定存在,且不為0,設:(),聯(lián)立消去得,由,即,得,結合,知記,,則直線的方程為由得易知,所以同理可得由,可得,即,化簡得,結合,解得21、(1)①;②證明見解析,(2)最少為6.56噸【解析】(1)①根據題意直接寫出一個遞推公式即可;②要證明是等比數列,只要證明為一個常數即可,求出等比數列的通項公式,即可求出的通項公式;(2)記為數列的前n項和,根據題意求出,利用分組求和法求出數列的前n項和,再令,解之即可得出答案.【小問1詳解】解:①依題意得,則,②因為,所以,所以,因為所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 繡球北方越冬管理辦法
- 福建企業(yè)宿舍管理辦法
- 規(guī)劃審批資金管理辦法
- 培訓心得課件下載
- 福建泉州市中考數學試卷
- 產后修復培訓課件
- 肖邦英語課件
- 甘肅2024年數學試卷
- 關老師批數學試卷
- 第二實驗中學數學試卷
- 2025年長沙市中考數學試卷真題(含標準答案)
- 2025年北京市中考數學試卷真題
- 2024年武漢市漢陽區(qū)招聘社區(qū)干事考試真題
- 廣告項目方案投標文件(技術方案)
- 北師大版4四年級下冊數學期末復習試卷(5套)
- 遼寧省大連市甘井子區(qū)2023-2024學年七年級下學期期末生物學試題(原卷版)
- 鐵路行車組織(高職)全套教學課件
- 北京玉淵潭中學英語新初一分班試卷含答案
- 小學一二年級校本教材古詩文
- 加油站消防安全培訓 (2)
- 脛腓骨骨折患者的中醫(yī)護理方案
評論
0/150
提交評論