版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆貴州黔東南州高一上數(shù)學(xué)期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直其中,為真命題的是A①和② B.②和③C.③和④ D.②和④2.基本再生數(shù)R0與世代間隔T是新冠肺炎流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天3.已知,則下列選項中正確的是()A. B.C. D.4.下列函數(shù)中,在R上為增函數(shù)的是()A.y=2-xC.y=2x5.若“”是假命題,則實數(shù)m的最小值為()A.1 B.-C. D.6.若圓錐的高等于底面直徑,則它的底面積與側(cè)面積之比是A. B.C. D.7.下列函數(shù)中,在其定義域內(nèi)單調(diào)遞減的是()A. B.C. D.8.已知函數(shù)是定義在R上的偶函數(shù),且在區(qū)間單調(diào)遞增.若實數(shù)a滿足,則a的取值范圍是A. B.C. D.9.“”是“函數(shù)在內(nèi)單調(diào)遞增”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要10.下列函數(shù)中,既是偶函數(shù)又在單調(diào)遞增的函數(shù)是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若正數(shù)a,b滿足,則的最大值為______.12.在三棱柱中,各棱長相等,側(cè)棱垂直于底面,點是側(cè)面的中心,則與平面所成角的大小是______.13.已知空間中兩個點A(1,3,1),B(5,7,5),則|AB|=_____14.計算的結(jié)果是_____________15.已知函數(shù),則__________16.隨機抽取100名年齡在[10,20),[20,30),…,[50,60)年齡段的市民進行問卷調(diào)查,由此得到樣本的頻率分布直方圖如圖所示.從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,則在[50,60)年齡段抽取的人數(shù)為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.正數(shù)x,y滿足.(1)求xy的最小值;(2)求x+2y的最小值18.已知直線與的交點為.(1)求交點的坐標(biāo);(2)求過交點且平行于直線的直線方程.19.已知集合且(1)若,求的值;(2)若,求實數(shù)組成的集合20.求下列各式的值(1)(2)(3)(4)21.已知,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇【詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題2、B【解析】根據(jù)題意可得,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結(jié)果.【詳解】因為,,,所以,所以,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點睛】本題考查了指數(shù)型函數(shù)模型的應(yīng)用,考查了指數(shù)式化對數(shù)式,屬于基礎(chǔ)題.3、A【解析】計算的取值范圍,比較范圍即可.【詳解】∴,,.∴.故選:A.4、C【解析】對于A,y=2-x=12x,在R上是減函數(shù);對于B,y=x2在-∞,0上是減函數(shù),在0,+∞上是增函數(shù);對于C,當(dāng)【詳解】解:對于A,y=2-x=12對于B,y=x2在-∞,0對于C,當(dāng)x≥0時,y=2x是增函數(shù),當(dāng)x<0時,y=x是增函數(shù),所以函數(shù)fx對于D,y=lgx的定義域是0,+∞故選:C.5、C【解析】根據(jù)題意可得“”是真命題,故只要即可,求出的最大值,即可求出的范圍,從而可得出答案.【詳解】解:因為“”是假命題,所以其否定“”是真命題,故只要即可,因為的最大值為,所以,解得,所以實數(shù)m的最小值為.故選:C.6、C【解析】設(shè)圓錐的底面半徑為,則高為,母線長則,,,選C.7、B【解析】根據(jù)函數(shù)的單調(diào)性確定正確選項【詳解】在上遞增,不符合題意.在上遞減,符合題意.在上有增有減,不符合題意.故選:B8、C【解析】函數(shù)是定義在上的偶函數(shù),∴,等價為),即.∵函數(shù)是定義在上的偶函數(shù),且在區(qū)間單調(diào)遞增,∴)等價為.即,∴,解得,故選項為C考點:(1)函數(shù)的奇偶性與單調(diào)性;(2)對數(shù)不等式.【思路點晴】本題主要考查對數(shù)的基本運算以及函數(shù)奇偶性和單調(diào)性的應(yīng)用,綜合考查函數(shù)性質(zhì)的綜合應(yīng)用根據(jù)函數(shù)的奇偶數(shù)和單調(diào)性之間的關(guān)系,綜合性較強.由偶函數(shù)結(jié)合對數(shù)的運算法則得:,即,結(jié)合單調(diào)性得:將不等式進行等價轉(zhuǎn)化即可得到結(jié)論.9、A【解析】由函數(shù)在內(nèi)單調(diào)遞增得,進而根據(jù)充分,必要條件判斷即可.【詳解】解:因為函數(shù)在內(nèi)單調(diào)遞增,所以,因為是的真子集,所以“”是“函數(shù)在內(nèi)單調(diào)遞增”的充分而不必要條件故選:A10、B【解析】由奇偶性排除,再由增減性可選出正確答案.【詳解】項為奇函數(shù),項為非奇非偶函數(shù)函數(shù),為偶函數(shù),項中,在單減,項中,在單調(diào)遞增.故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、##0.25【解析】根據(jù)等式關(guān)系進行轉(zhuǎn)化,構(gòu)造函數(shù),判斷函數(shù)的單調(diào)性,利用轉(zhuǎn)化法轉(zhuǎn)化為一元二次函數(shù)進行求解即可【詳解】由得,設(shè),則在上為增函數(shù),則,等價為(a),則,則,,當(dāng)時,有最大值,故答案為:12、60°【解析】取BC的中點E,則,則即為所求,設(shè)棱長為2,則,13、【解析】直接代入空間中兩點間的距離公式即可得解.【詳解】∵空間中兩個點A(1,3,1),B(5,7,5),∴|AB|4故答案為:4【點睛】本題考查空間中兩點間的距離公式,屬于基礎(chǔ)題.14、.【解析】根據(jù)對數(shù)的運算公式,即可求解.【詳解】根據(jù)對數(shù)的運算公式,可得.故答案為:.15、3【解析】16、3【解析】根據(jù)頻率分布直方圖,求得不小于40歲的人的頻率及人數(shù),再利用分層抽樣的方法,即可求解,得到答案【詳解】根據(jù)頻率分布直方圖,得樣本中不小于40歲的人的頻率是0.015×10+0.005×10=0.2,所以不小于40歲的人的頻數(shù)是100×0.2=20;從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,在[50,60)年齡段抽取人數(shù)為【點睛】本題主要考查了頻率分布直方圖的應(yīng)用,其中解答中熟記頻率分布直方圖的性質(zhì),以及頻率分布直方圖中概率的計算方法是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)36;(2)【解析】(1)由基本不等式可得,再求解即可;(2)由,再求解即可.【詳解】解:(1)由得xy≥36,當(dāng)且僅當(dāng),即時取等號,故xy的最小值為36.(2)由題意可得,當(dāng)且僅當(dāng),即時取等號,故x+2y的最小值為.【點睛】本題考查了基本不等式的應(yīng)用,重點考查了拼湊法構(gòu)造基本不等式,屬中檔題.18、(1)點的坐標(biāo)是;(2)直線方程為.【解析】(1)聯(lián)立兩條直線的方程得到交點坐標(biāo);(2)根據(jù)條件可設(shè)所求直線方程為,將P點坐標(biāo)代入得到參數(shù)值解析:(1)由解得所以點的坐標(biāo)是.(2)因為所求直線與平行,所以設(shè)所求直線方程為把點坐標(biāo)代入得,得故所求的直線方程為.19、(1),(2)【解析】(1)由得,,求得,再求得,從而得集合,最后可得值;(2)求得集合,由分類討論可得值【小問1詳解】因,,且,,所以,,所以,解得,所以.所以,所以,解得【小問2詳解】若,可得,因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025北京市建材購買合同(衛(wèi)浴潔具類)
- 委托管理物業(yè)合同
- 2025VR設(shè)備租賃合同版
- 2025危險品運輸承包合同范本
- 咖啡廳租房合同
- 少年用化妝品購銷合同
- 2025年計算機機房設(shè)備項目規(guī)劃申請報告模式
- 2025辦公室裝修合同樣書(合同版本)
- 2025年采暖設(shè)備項目立項申請報告模范
- 2025國際廣場商城商場內(nèi)部承包合同
- 2025年有機肥行業(yè)發(fā)展趨勢分析報告
- 2023-2024年員工三級安全培訓(xùn)考試題及參考答案(綜合題)
- 2025-2030年中國融雪劑行業(yè)運行動態(tài)及發(fā)展前景預(yù)測報告
- 2025保安部年度工作計劃
- 2024年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫
- 人居環(huán)境綜合治理項目項目背景及必要性分析
- 招標(biāo)采購基礎(chǔ)知識培訓(xùn)
- 電力系統(tǒng)分布式模型預(yù)測控制方法綜述與展望
- 2024年注冊建筑師-二級注冊建筑師考試近5年真題附答案
- 五年級口算題卡每天100題帶答案
評論
0/150
提交評論