2025屆安徽省滁州市南橋區(qū)海亮學校高二上數(shù)學期末監(jiān)測試題含解析_第1頁
2025屆安徽省滁州市南橋區(qū)海亮學校高二上數(shù)學期末監(jiān)測試題含解析_第2頁
2025屆安徽省滁州市南橋區(qū)海亮學校高二上數(shù)學期末監(jiān)測試題含解析_第3頁
2025屆安徽省滁州市南橋區(qū)海亮學校高二上數(shù)學期末監(jiān)測試題含解析_第4頁
2025屆安徽省滁州市南橋區(qū)海亮學校高二上數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省滁州市南橋區(qū)海亮學校高二上數(shù)學期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)有零點,則實數(shù)的取值范圍是()A. B.C. D.2.命題:“,”的否定形式為()A., B.,C., D.,3.已知直線過點,,則直線的方程為()A. B.C. D.4.已知函數(shù),則下列說法正確的是()A.的最小正周期為 B.的圖象關于直線C.的一個零點為 D.在區(qū)間的最小值為15.橢圓的焦點為、,上頂點為,若,則()A B.C. D.6.設函數(shù),則()A.1 B.5C. D.07.拋物線的焦點坐標為()A. B.C. D.8.在空間直角坐標系中,點關于平面的對稱點的坐標是()A. B.C. D.9.若直線的斜率為,則的傾斜角為()A. B.C. D.10.若直線與圓相切,則()A. B.或2C. D.或11.已知橢圓的右焦點和右頂點分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.12.如圖1所示,拋物面天線是指由拋物面(拋物線繞其對稱軸旋轉形成的曲面)反射器和位于其焦點上的照射器(饋源,通常采用喇叭天線)組成的單反射面型天線,廣泛應用于微波和衛(wèi)星通訊等,具有結構簡單、方向性強、工作頻帶寬等特點.圖2是圖1的軸截面,,兩點關于拋物線的對稱軸對稱,是拋物線的焦點,是饋源的方向角,記為.焦點到頂點的距離與口徑的比為拋物面天線的焦徑比,它直接影響天線的效率與信噪比等.若饋源方向角滿足,則該拋物面天線的焦徑比為()A. B.C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和.則數(shù)列的通項公式為_______.14.已知拋物線的準線方程為,則________15.曲線的長度為____________.16.已知拋物線的頂點為坐標原點,焦點坐標是,則該拋物線的標準方程為___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市為加強市民對新冠肺炎的知識了解,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組[20,25),共5人,第2組[25,30),共35人,第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.(1)求a的值;(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場宣傳活動,且該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第3組至少有-名志愿者被抽中的概率.18.(12分)已知圓C的圓心在直線上,且經過點和(1)求圓C的標準方程;(2)若過點的直線l與圓C交于A,B兩點,且,求直線l的方程19.(12分)已知橢圓的左焦點為,點到短袖的一個端點的距離為.(1)求橢圓的方程;(2)過點作斜率為的直線,與橢圓交于,兩點,若,求的取值范圍.20.(12分)已知橢圓()與橢圓的焦點相同,且橢圓C過點(1)求橢圓C的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,且,(O為坐標原點),若存在,求出該圓的方程;若不存在,說明理由;(3)P是橢圓C上異于上頂點,下頂點的任一點,直線,,分別交x軸于點N,M,若直線OT與過點M,N的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值21.(12分)已知橢圓左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程22.(10分)已知函數(shù),.(1)當時,求不等式的解集;(2)若在上恒成立,求取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設,則函數(shù)有零點轉化為函數(shù)的圖象與直線有交點,利用導數(shù)判斷函數(shù)的單調性,即可求出【詳解】設,定義域為,則,易知為單調遞增函數(shù),且所以當時,,遞減;當時,,遞增,所以所以,即故選:A【點睛】本題主要考查根據(jù)函數(shù)有零點求參數(shù)的取值范圍,意在考查學生的轉化能力,屬于基礎題2、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結論.3、C【解析】根據(jù)兩點的坐標和直線的兩點式方程計算化簡即可.【詳解】由直線的兩點式方程可得,直線l的方程為,即故選:C4、D【解析】根據(jù)余弦函數(shù)的圖象與性質判斷其周期、對稱軸、零點、最值即可.【詳解】函數(shù),周期為,故A錯誤;函數(shù)圖像的對稱軸為,,,不是對稱軸,故B錯誤;函數(shù)的零點為,,,所以不是零點,故C錯誤;時,,所以,即,所以,故D正確.故選:D5、C【解析】分析出為等邊三角形,可得出,進而可得出關于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因為橢圓的上頂點為點,焦點為、,所以,,為等邊三角形,則,即,因此,.故選:C.6、B【解析】由題意結合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以原式等于.故選:B.7、C【解析】先把拋物線方程化為標準方程,求出即可求解【詳解】由,有,可得,拋物線的焦點坐標為故選:C8、C【解析】根據(jù)空間里面點關于面對稱的性質即可求解.【詳解】在空間直角坐標系中,點關于平面的對稱點的坐標是.故選:C.9、C【解析】設直線l傾斜角為,根據(jù)題意得到,即可求解.【詳解】設直線l的傾斜角為,因為直線的斜率是,可得,又因為,所以,即直線的傾斜角為.故選:C.10、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.11、B【解析】根據(jù)橢圓方程及其性質有,求解即可.【詳解】由題設,,整理得,可得.故選:B12、B【解析】建立平面直角坐標系,利用題設條件得到得點坐標,代入拋物線方程化簡即可求解【詳解】建立如圖所示的平面直角坐標系,設拋物線的方程為()在中,則所以則所以,所以將代入拋物線方程中得所以或即或(舍)當時,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)公式求解即可.【詳解】解:當時,當時,因為也適合此等式,所以.故答案為:14、【解析】由準線方程的表達式構建方程,求得答案.【詳解】因為準線方程為,所以故答案為:4【點睛】本題考查拋物線中準線的方程表示,屬于基礎題.15、【解析】曲線的圖形是:以原點為圓心,以2為半徑的圓的左半圓,進而可求出結果.【詳解】解:由得,所以曲線()的圖形是:以原點為圓心,以2為半徑的圓的左半圓,∴曲線()的長度是,故答案為:.16、【解析】根據(jù)焦點坐標即可得到拋物線的標準方程【詳解】因為拋物線的頂點為坐標原點,焦點坐標是,所以,解得,拋物線的標準方程為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)0.04;(2).【解析】(1)根據(jù)頻率的計算公式,結合概率之和為1,即可求得參數(shù);(2)根據(jù)題意求得抽樣比以及第三組和第四組各抽取的人數(shù),再列舉所有可能抽取的情況,找出滿足題意的情況,利用古典概型的概率計算公式即可求得結果.【小問1詳解】第一組頻率為,第二組的頻率為,則第一組與第二組的頻率之和為,又,故.【小問2詳解】第3組的人數(shù)為,第4組的人數(shù)為,第5組的人數(shù)為,因為第3,4,5組共有60名志愿者,所以利用分層抽樣的方法在60名志題者中抽收6名志愿者,每組抽取的人數(shù)分別為:第3組:;第4組:;第5組:.記第3組的3名志愿者為,第4組的2名志愿者為,則從5名志愿者中抽取2名志愿者有:,,共有10種其中第3組的3名志愿者至少有一名志愿者被抽中的有:,共9種.所以第3組至少有一名志愿者被抽中的概率為.18、(1)(2)或【解析】(1)點和的中垂線經過圓心,兩直線聯(lián)立方程得圓心坐標,再利用兩點間距離公式求解半徑.(2)已知弦長,求解直線方程,分類討論斜率是否存在.小問1詳解】點和的中點為,,所以中垂線的,利用點斜式得方程為,聯(lián)立方程得圓心坐標為,所以圓C的標準方程為.【小問2詳解】當過點的直線l斜率不存在時,直線方程為,此時弦長,符合題意.當過點的直線l斜率存在時,設直線方程為,化簡得,弦心距,所以,解得,所以直線方程為.綜上所述直線方程為或.19、(1)(2)或【解析】(1)根據(jù)焦點坐標可得,根據(jù)點到短袖一個端點的距離為,然后根據(jù)即可;(2)先設聯(lián)立直線與橢圓的方程,然后根據(jù)韋達定理得到,兩點的坐標關系,然后根據(jù)建立關于直線的斜率的不等式,解出不等式即可.【小問1詳解】根據(jù)題意,已知橢圓的左焦點為,則有:點到短袖一個端點的距離為,則有:則有:故橢圓的方程為:【小問2詳解】設過點作斜率為的直線的方程為:聯(lián)立直線與橢圓的方程可得:則有:,直線過點,所以恒成立,不妨設,兩點的坐標分別為:,則有:又且則有:將,代入后可得:若,則有:解得:或20、(1);(2)存在,;(3)證明見解析,定值2【解析】(1)根據(jù)已知條件,用待定系數(shù)解方程組即可得到C的方程;(2)設出AB的方程,與橢圓方程聯(lián)立,得到根與系數(shù)關系,代入由確定方程內即可得到結果;(3)設P點坐標,求出M和N坐標,設出圓G的圓心坐標,求得圓的半徑,由垂徑定理求得切線長|OT|,結合P在橢圓上可證|OT|為定值﹒【小問1詳解】設橢圓C的方程為將點代入橢圓方程有點解得,(舍)∴橢圓的方程為;【小問2詳解】設,當AB斜率存在時,設,代入,整理得,由得,即,由韋達定理化簡得,即,設存在圓與直線相切,則,解得,∴圓的方程為;又若AB斜率不存在時,檢驗知滿足條件,故存在圓心在原點的圓符合題意;【小問3詳解】如圖:,,設,直線,令,得;直線,令,得;解法一:設圓G的圓心為,則,,,而,∴,∴,∴,即線段OT長度為定值2解法二:,而,∴,∴由切割線定理得.∴,即線段OT的長度為定值221、(1)證明見解析;(2).【解析】(1)設,首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據(jù)為的中點,即可證明直線必過坐標原點(2)設出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達;根據(jù)條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設,則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標原點【小問2詳解】當直線的斜率存在時,設直線的方程為,,聯(lián)立,整理得,則,,.因為,所以,因為,解得或.當時,直線的方程為過點A,不滿足題意,所以舍去;所以直線的方程為,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論