版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省扶溝縣高二數(shù)學第一學期期末經典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若方程表示雙曲線,則的取值范圍是()A.或 B.C.或 D.2.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.3.設、是向量,命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則4.已知定義在R上的函數(shù)滿足,且有,則的解集為()A B.C. D.5.下列說法:①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②從統(tǒng)計量中得知有的把握認為吸煙與患肺病有關系,是指有的可能性使得推斷出現(xiàn)錯誤;③回歸直線就是散點圖中經過樣本數(shù)據(jù)點最多的那條直線;④如果兩個變量的線性相關程度越高,則線性相關系數(shù)就越接近于;其中錯誤說法的個數(shù)是()A. B.C. D.6.曲線在點處的切線方程是()A. B.C. D.7.中共一大會址、江西井岡山、貴州遵義、陜西延安是中學生的幾個重要的研學旅行地.某中學在校學生人,學校團委為了了解本校學生到上述紅色基地研學旅行的情況,隨機調查了名學生,其中到過中共一大會址或井岡山研學旅行的共有人,到過井岡山研學旅行的人,到過中共一大會址并且到過井岡山研學旅行的恰有人,根據(jù)這項調查,估計該學校到過中共一大會址研學旅行的學生大約有()人A. B.C. D.8.若,則下列不等式不能成立是()A. B.C. D.9.函數(shù)f(x)=-1+lnx,對?x0,f(x)≥0成立,則實數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)10.在數(shù)列中,,,則()A. B.C. D.11.在等比數(shù)列中,,,則等于A. B.C. D.或12.從1,2,3,4,5中任取2個不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與,若,則實數(shù)a的值為______14.攢尖是古代中國建筑中屋頂?shù)囊环N結構形式,依其平面有圓形攢尖、三角攢尖、四角攢尖、八角攢尖.如圖屬重檐四角攢尖,它的上層輪廓可近似看作一個正四棱錐,若此正四棱錐的側面積是底面積的2倍,則側面與底面的夾角為___________15.已知函數(shù)的單調遞減區(qū)間是,則的值為______.16.若與直線垂直,那么__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,,平面,,分別為棱,的中點.(1)求證:;(2)若,,二面角的大小為,求三棱錐的體積.18.(12分)已知橢圓的左、右焦點分別為,離心率為,圓:過橢圓的三個頂點,過點的直線(斜率存在且不為0)與橢圓交于兩點(1)求橢圓的標準方程(2)證明:在軸上存在定點,使得為定值,并求出定點的坐標19.(12分)已知,使;不等式對一切恒成立.如果為真命題,為假命題,求實數(shù)的取值范圍.20.(12分)△ABC的三個頂點分別為(1)求△ABC的外接圓M的方程;(2)設直線與圓M交于兩點,求|PQ|的值21.(12分)如圖,在四棱錐P—ABCD中,底面ABCD為矩形,平面PAD⊥平面ABCD,PA?PD,E,F(xiàn)分別為AD,PB的中點.求證:(1)EF//平面PCD;(2)平面PAB?平面PCD22.(10分)已知函數(shù)(1)求函數(shù)的單調區(qū)間;(2)求函數(shù)在區(qū)間上的值域
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由和的分母異號可得【詳解】由題意,解得或故選:A2、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉化為點到準線的距離,即可求出線段中點的橫坐標,即得到答案.【詳解】由已知可得拋物線的準線方程為,設點的坐標分別為和,由拋物線的定義得,即,線段中點的橫坐標為,故線段的中點到軸的距離是.故選:.3、C【解析】利用原命題與逆否命題之間的關系可得結論.【詳解】由原命題與逆否命題之間的關系可知,命題“若,則”的逆否命題是“若,則”.故選:C.4、A【解析】構造,應用導數(shù)及已知條件判斷的單調性,而題設不等式等價于即可得解.【詳解】設,則,∴在R上單調遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A5、C【解析】根據(jù)統(tǒng)計的概念逐一判斷即可.【詳解】對于①,方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,①正確;對于②從統(tǒng)計量中得知有的把握認為吸煙與患肺病有關系,是指有的可能性使得推斷出現(xiàn)錯誤;故②正確;對于③,線性回歸方程必過樣本中心點,回歸直線不一定就是散點圖中經過樣本數(shù)據(jù)點最多的那條直線,也可能不過任何一個點;③不正確;對于④,如果兩個變量的線性相關程度越高,則線性相關系數(shù)就越接近于,不正確,應為相關系數(shù)的絕對值就越接近于;綜上,其中錯誤的個數(shù)是;故選:C.6、B【解析】求導,得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B7、B【解析】作出韋恩圖,設調查的學生中去過中共一大會址研學旅行的學生人數(shù)為,根據(jù)題意求出的值,由此可得出該學校到過中共一大會址研學旅行的學生人數(shù).【詳解】如下圖所示,設調查的學生中去過中共一大會址研學旅行的學生人數(shù)為,由題意可得,解的,因此,該學校到過中共一大會址研學旅行的學生的人數(shù)為.故選:B.【點睛】本題考查韋恩圖的應用,同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎題.8、C【解析】利用不等式的性質可判斷ABD,利用賦值法即可判斷C,如.【詳解】解:因為,所以,所以,,,故ABD正確;對于C,若,則,故C錯誤.故選:C.9、B【解析】由導數(shù)求得的最小值,由最小值非負可得的范圍【詳解】定義域是,,若,則在上恒成立,單調遞增,,不合題意;若,則時,,遞減,時,,遞增,所以時,取得極小值也是最小值,由題意,解得故選:B10、A【解析】根據(jù)已知條件,利用累加法得到的通項公式,從而得到.【詳解】由,得,所以,所以.故選:A.11、D【解析】∵為等比數(shù)列,∴,又∴為的兩個不等實根,∴∴或∴故選D12、B【解析】利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由可得,從而可求出實數(shù)a的值【詳解】因為直線與,且,所以,解得,故答案:14、【解析】設此四棱錐P-ABCD底面邊長為,斜高為,連結AC、BD交于點O,連結OP.則以O為原點,為x、y、z軸正半軸建立空間直角坐標系,用向量法求出側面與底面夾角.【詳解】設此四棱錐P-ABCD底面邊長為,斜高為,連結AC、BD交于點O,連結OP.則,,以O為原點,為x、y、z軸正半軸建立空間直角坐標系則,,設平面的法向量為,則,令,則,顯然平面的法向量為所以,所以側面與底面的夾角為故答案為:.15、【解析】先求出,由題設易知是的解集,利用根與系數(shù)關系求m、n,進而求的值.【詳解】由題設,,由單調遞減區(qū)間是,∴的解集為,則是的解集,∴,可得,故.故答案為:16、【解析】由兩條直線垂直知,得三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)利用線面垂直的判定定理及性質即證;(2)利用坐標法,結合條件可求,然后利用體積公式即求.【小問1詳解】,是的中點,,平面,平面,,又,平面,平面,;【小問2詳解】,,,取的中點,連接,則,平面,以為坐標原點,分別以、、所在直線為、、軸建立空間直角坐標系,設,則,,,,,,,,設平面的一個法向量為,由,取,得;設平面的一個法向量為,由,取,得,∵二面角的大小為,,解得,,則三棱錐的體積.18、(1);(2)見解析,定點【解析】(1)先判斷圓經過橢圓的上、下頂點和右頂點,令圓方程中的,得,即.再由求即可.(2)設在軸上存在定點,使得為定值,根據(jù)題意,設直線的方程為,聯(lián)立可得,再運算將韋達定理代入化簡有與k無關即可.【詳解】(1)由圓方程中的時,的兩根不為相反數(shù),故可設圓經過橢圓的上、下頂點和右頂點,令圓方程中的,得,即有又,解得∴橢圓的標準方程為(2)證明:設在軸上存在定點,使得為定值,由(1)可得,設直線的方程為,聯(lián)立可得,設,則,,要使為定值,只需,解得∴在軸上存在定點,使得為定值,定點的坐標為【點睛】本題主要考查橢圓的幾何性質和直線與橢圓的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.19、【解析】若真命題,利用分離參數(shù)法結合指數(shù)函數(shù)性質,可得;若為真命題,利用分離參數(shù)法并結合基本不等式可得,再根據(jù)為真命題,為假命題,可知,一真命題一假命題;再分“為真命題,為假命題”和“為假命題,為真命題”兩種情況,求解范圍,即可得到結果.【詳解】解:若為真命題,則有解,所以,即;若為真命題,則對一切恒成立,令則,當且僅當,即時,取得最小值;所以,即;又為真命題,為假命題,所以,一真命題一假命題;當為真命題,為假命題時,,所以;當為假命題,為真命題時,,所以;綜上所述,.20、(1);(2).【解析】(1)設出圓的一般方程,根據(jù)的坐標滿足圓方程,待定系數(shù),即可求得圓方程;(2)根據(jù)(1)中所求圓方程,結合弦長公式,即可求得結果.【小問1詳解】設圓M的方程為,因為都在圓上,則,解得,故圓M的方程為,也即.【小問2詳解】由(1)可知,圓M的圓心坐標為,半徑為,點M到直線的距離故.21、(1)見解析;(2)見解析【解析】(1)取BC中點G,連結EG,F(xiàn)G,推導出,,從而平面平面,由此能得出結論;(2)推導出,從而平面PAD,即得,結合得出平面PCD,由此能證明結論成立.【詳解】(1)取BC中點G,連結EG,F(xiàn)G,∵E,F(xiàn)分別是AD,PB的中點,∴,,∴面,面,∵,∴平面平面,∵平面,∴平面.(2)因為底面ABCD為矩形,所以,又因為平面平面ABCD,平面平面,平面ABCD,所以平面PAD因為平面PAD,所以.又因為,,所以平面PCD因為平面PAB,所以平面平面PCD【點睛】本題考查線線垂直、線面平行、面面垂直的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.22、(1)單調遞增區(qū)間為,單調遞減區(qū)間為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)內部的安全監(jiān)督培訓與教育
- 2025中國電信吉林白山分公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國林業(yè)集團限公司總部招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國國際海運集裝箱(集團)股份限公司招聘高頻重點提升(共500題)附帶答案詳解
- 2025下半年陜西陜西延安市事業(yè)單位招聘工作人員375人高頻重點提升(共500題)附帶答案詳解
- 2025下半年貴州安順市鎮(zhèn)寧自治縣事業(yè)單位招聘99人高頻重點提升(共500題)附帶答案詳解
- 2025下半年湖北襄陽事業(yè)單位聯(lián)考高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川宜賓事業(yè)單位歷年高頻重點提升(共500題)附帶答案詳解
- 2025上海煙草集團上海牡丹香精香料限公司招聘2人高頻重點提升(共500題)附帶答案詳解
- 2025上半年黑龍江雞西市事業(yè)單位招聘工作人員120人歷年高頻重點提升(共500題)附帶答案詳解
- 一年級上心理健康教育《我是小學生了》課件PPT
- 水庫回水計算(實用)
- 山東第一醫(yī)科大學護理倫理學期末復習題
- 清華物理習題庫試題及答案光學
- 中班美術活動美麗的蝴蝶教案【含教學反思】
- 管理供應商 供應商績效評估
- 1000MW機組鍋爐過渡段T23水冷壁管檢修導則(征求意見稿)
- 夾層鋼結構施工方案鋼結構夾層施工方案
- 國開本科《商務英語4》機考題庫及答案
- GB/T 33661-2017農歷的編算和頒行
- GB/T 28708-2012管道工程用無縫及焊接鋼管尺寸選用規(guī)定
評論
0/150
提交評論