版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
廈門市大同中學(xué)2025屆數(shù)學(xué)高一上期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列選項中,與最接近的數(shù)是A. B.C. D.2.若,,且,,則函數(shù)與函數(shù)在同一坐標(biāo)系中的圖像可能是()A. B.C. D.3.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍為()A B.C. D.4.若函數(shù)的三個零點分別是,且,則()A. B.C. D.5.已知函數(shù)是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.6.下列函數(shù)中既是偶函數(shù),又在上單調(diào)遞增的是()A B.C. D.7.已知直三棱柱中,,,,則異面直線與所成角的余弦值為A. B.C. D.8.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的表面積為A. B.C.90 D.819.設(shè)四邊形ABCD為平行四邊形,,.若點M,N滿足,則()A.20 B.15C.9 D.610.圓的圓心到直線的距離是()A. B.C.1 D.二、填空題:本大題共6小題,每小題5分,共30分。11.若直線l在x軸上的截距為1,點到l的距離相等,則l的方程為______.12.不等式的解集為_________________.13.已知圓:,為圓上一點,、、,則的最大值為______.14.已知角的終邊經(jīng)過點,則的值為_______________.15.為了實現(xiàn)綠色發(fā)展,避免用電浪費,某城市對居民生活用電實行“階梯電價”.計費方法如表所示,若某戶居民某月交納電費227元,則該月用電量為_______度.每戶每月用電量電價不超過210度的部分0.5元/度超過210度但不超過400度的部分0.6元/度超過400度的部分0.8元/度16.如果,且,則化簡為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的周期是.(1)求的單調(diào)遞增區(qū)間;(2)求在上的最值及其對應(yīng)的的值.18.黔東南州某銀行柜臺異地跨行轉(zhuǎn)賬手續(xù)費的收費標(biāo)準(zhǔn)為;轉(zhuǎn)賬不超過200元,每筆收1元:轉(zhuǎn)賬不超過10000元,每筆收轉(zhuǎn)賬金額的0.5%:轉(zhuǎn)賬超過10000元時每筆收50元,張黔需要在該銀行柜臺進行一筆異地跨行轉(zhuǎn)賬的業(yè)務(wù).(1)若張黔轉(zhuǎn)賬的金額為x元,手續(xù)費為y元,請將y表示為x的函數(shù):(2)若張黔轉(zhuǎn)賬的金額為10t-3996元,他支付的于練費大于5元且小了50元,求t的取值范圍.19.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)區(qū)間;(2)求函數(shù)在上的值域.20.已知,,求下列各式的值:(1)(2)21.如圖,在四棱錐中,底面ABCD為平行四邊形,,平面底面ABCD,M是棱PC上的點.(1)證明:底面;(2)若三棱錐的體積是四棱錐體積的,設(shè),試確定的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】,該值接近,選C.2、B【解析】結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)的圖象按和分類討論【詳解】對數(shù)函數(shù)定義域是,A錯;C中指數(shù)函數(shù)圖象,則,為減函數(shù),C錯;BD中都有,則,因此為增函數(shù),只有B符合故選:B3、C【解析】函數(shù)為復(fù)合函數(shù),先求出函數(shù)的定義域為,因為外層函數(shù)為減函數(shù),則求內(nèi)層函數(shù)的減區(qū)間為,由題意知函數(shù)在區(qū)間上單調(diào)遞增,則是的子集,列出關(guān)于的不等式組,即可得到答案.【詳解】的定義域為,令,則函數(shù)為,外層函數(shù)單調(diào)遞減,由復(fù)合函數(shù)的單調(diào)性為同增異減,要求函數(shù)的增區(qū)間,即求的減區(qū)間,當(dāng),單調(diào)遞減,則在上單調(diào)遞增,即是的子集,則.故選:C.4、D【解析】利用函數(shù)的零點列出方程,再結(jié)合,得出關(guān)于的不等式,解之可得選項【詳解】因為函數(shù)的三個零點分別是,且,所以,,解得,所以函數(shù),所以,又,所以,故選:D【點睛】關(guān)鍵點睛:本題考查函數(shù)的零點與方程的根的關(guān)系,關(guān)鍵在于準(zhǔn)確地運用零點存在定理5、B【解析】可知分段函數(shù)在R上單調(diào)遞增,只需要每段函數(shù)單調(diào)遞增且在臨界點處的函數(shù)值左邊小于等于右邊,列出不等式即可【詳解】可知函數(shù)在R上單調(diào)遞增,所以;對稱軸,即;臨界點處,即;綜上所述:故選:B6、C【解析】根據(jù)常見函數(shù)的單調(diào)性和奇偶性,即可容易判斷選擇.【詳解】根據(jù)題意,依次分析選項:對于A,,奇函數(shù),不符合題意;對于B,,為偶函數(shù),在上單調(diào)遞減,不符合題意;對于C,,既是偶函數(shù),又在上單調(diào)遞增,符合題意;對于D,為奇函數(shù),不符合題意;故選:C.【點睛】本題考查常見函數(shù)單調(diào)性和奇偶性的判斷,屬簡單題.7、C【解析】如圖所示,補成直四棱柱,則所求角為,易得,因此,故選C平移法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面問題化歸為共面問題來解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認(rèn)定:證明作出的角就是所求異面直線所成的角;③計算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角.求異面直線所成的角要特別注意異面直線之間所成角的范圍8、B【解析】解:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的斜四棱柱,其底面面積為:3×6=18,前后側(cè)面的面積為:3×6×2=36,左右側(cè)面的面積為:,故棱柱的表面積為:故選B點睛:本題考查知識點是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵,由三視圖判斷空間幾何體(包括多面體、旋轉(zhuǎn)體和組合體)的結(jié)構(gòu)特征是高考中的熱點問題.9、C【解析】根據(jù)圖形得出,,,結(jié)合向量的數(shù)量積求解即可.【詳解】因為四邊形ABCD為平行四邊形,點M、N滿足,根據(jù)圖形可得:,,,,,,,,故選C.本題考查了平面向量的運算,數(shù)量積的運用,考查了數(shù)形結(jié)合的思想,關(guān)鍵是向量的分解,表示.考點:向量運算.10、A【解析】根據(jù)圓的方程得出圓心坐標(biāo)(1,0),直接依據(jù)點到直線的距離公式可以得出答案.【詳解】圓的圓心坐標(biāo)為(1,0),∴圓心到直線的距離為.故選:A.【點睛】本題考查點到直線距離公式,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】考慮斜率不存在和存在兩種情況,利用點到直線距離公式計算得到答案.【詳解】顯然直線軸時符合要求,此時的方程為.當(dāng)直線l的斜率存在時,設(shè)直線l的斜率為k,則l的方程為,即.∵A,B到l的距離相等∴,∴,∴,∴直線l的方程為.故答案為或【點睛】本題考查了點到直線的距離公式,忽略掉斜率不存在的情況是容易犯的錯誤.12、或.【解析】利用一元二次不等式的求解方法進行求解.【詳解】因為,所以,所以或,所以不等式的解集為或.故答案為:或.13、53【解析】設(shè),則,從而求出,再根據(jù)的取值范圍,求出式子的最大值.【詳解】設(shè),因為為圓上一點,則,且,則(當(dāng)且僅當(dāng)時取得最大值),故答案為:53.【點睛】本題屬于圓與距離的應(yīng)用問題,主要考查代數(shù)式的最值求法.解決此類問題一是要將題設(shè)條件轉(zhuǎn)化為相應(yīng)代數(shù)式;二是要確定代數(shù)式中變量的取值范圍.14、【解析】到原點的距離.考點:三角函數(shù)的定義.15、410【解析】由題意列出電費(元)關(guān)于用電量(度)的函數(shù),令,代入運算即可得解.【詳解】由題意,電費(元)關(guān)于用電量(度)的函數(shù)為:,即,當(dāng)時,,若,,則,解得.故答案為:410.16、【解析】由,且,得到是第二象限角,由此能化簡【詳解】解:∵,且,∴是第二象限角,∴故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當(dāng)時,;當(dāng)時,.【解析】(1)先由周期為求出,再根據(jù),進行求解即可;(2)先求出,可得,進而求解即可【詳解】(1)解:∵,∴,又∵,∴,∴,∵,,∴,,∴,,∴的單調(diào)遞增區(qū)間為(2)解:∵∴,∴,∴,∴,∴,當(dāng)時,,當(dāng),即時,【點睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,考查正弦型函數(shù)的最值問題,屬于基礎(chǔ)題18、(1)(2)【解析】(1)根據(jù)已知條件,寫成分段函數(shù),即可求解;(2)根據(jù)已知條件,結(jié)合指數(shù)函數(shù)的性質(zhì),即可求解【小問1詳解】解:當(dāng)時,,當(dāng)時,,當(dāng)時,,故;【小問2詳解】解:從(1)中的分段函數(shù)得,如果張黔支付的手續(xù)費大于5元且小于50元,則轉(zhuǎn)賬金額大于1000元,且小于10000元,則只需要考慮當(dāng)時的情況即可,由,所以,得,得,即實數(shù)t的取值范圍是19、⑴,遞增區(qū)間,遞減區(qū)間⑵【解析】整理函數(shù)的解析式可得:.(1)由最小正周期公式和函數(shù)的解析式求解最小正周期和單調(diào)區(qū)間即可.⑵結(jié)合函數(shù)的定義域和三角函數(shù)的性質(zhì)可得函數(shù)的值域為.詳解】.(1),遞增區(qū)間滿足:,據(jù)此可得,單調(diào)遞增區(qū)間為,遞減區(qū)間滿足:,據(jù)此可得,單調(diào)遞減區(qū)間為.(2),,,,的值域為.【點睛】本題主要考查三角函數(shù)的性質(zhì),三角函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.20、(1).(2)【解析】(1)利用二倍角公式和誘導(dǎo)公式直接求解;(2)判斷出,根據(jù),求出的值.【小問1詳解】因為,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度文化產(chǎn)品出口代理協(xié)議模板3篇
- 2025年度征收補償與安置補償協(xié)議執(zhí)行監(jiān)督辦法4篇
- 2024年04月湖南國家開發(fā)銀行湖南分行暑期實習(xí)生招考筆試歷年參考題庫附帶答案詳解
- 個人汽車租借協(xié)議2024年標(biāo)準(zhǔn)格式樣張版B版
- 2025年度文化創(chuàng)意產(chǎn)業(yè)園區(qū)場地租賃管理協(xié)議4篇
- 個人與公司買賣合同范本完整版
- 2025年度文化產(chǎn)業(yè)園區(qū)場地合作開發(fā)合同協(xié)議書4篇
- 2024版室外房屋墻面裝修合同書版B版
- 2025年度化妝品全球包銷代理合同范本4篇
- 2024裝飾裝修合同的法律適用
- 礦山安全生產(chǎn)法律法規(guī)
- 標(biāo)點符號的研究報告
- 小學(xué)數(shù)學(xué)《比的認(rèn)識單元復(fù)習(xí)課》教學(xué)設(shè)計(課例)
- 詞性轉(zhuǎn)換清單-2024屆高考英語外研版(2019)必修第一二三冊
- GB/T 44670-2024殯儀館職工安全防護通用要求
- 安徽省合肥市2023-2024學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)
- 合同債務(wù)人變更協(xié)議書模板
- 2024年高中生物新教材同步選擇性必修第三冊學(xué)習(xí)筆記第4章 本章知識網(wǎng)絡(luò)
- 西班牙可再生能源行業(yè)市場前景及投資研究報告-培訓(xùn)課件外文版2024.6光伏儲能風(fēng)電
- 2024-2029年中國制漿系統(tǒng)行業(yè)市場現(xiàn)狀分析及競爭格局與投資發(fā)展研究報告
- (正式版)SHT 3225-2024 石油化工安全儀表系統(tǒng)安全完整性等級設(shè)計規(guī)范
評論
0/150
提交評論