版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江西省撫州市臨川實驗學校高一數(shù)學第一學期期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.定義域在R上的函數(shù)是奇函數(shù)且,當時,,則的值為()A. B.C D.2.如圖,在直角梯形ABCD中,AB⊥BC,AD=DC=2,CB=,動點P從點A出發(fā),由A→D→C→B沿邊運動,點P在AB上的射影為Q.設(shè)點P運動的路程為x,△APQ的面積為y,則y=f(x)的圖象大致是()A. B.C. D.3.已知函數(shù)是冪函數(shù),且在上是減函數(shù),則實數(shù)m的值是()A或2 B.2C. D.14.下列函數(shù)中,為偶函數(shù)的是()A. B.C. D.5.已知函數(shù)對于任意兩個不相等實數(shù),都有成立,則實數(shù)的取值范圍是()A. B.C. D.6.函數(shù)的最小正周期是()A.π B.2πC.3π D.4π7.設(shè)是兩條不同的直線,是兩個不同的平面,且,則下列說法正確的是A.若,則 B.若,則C.若,則 D.若,則8.若,,,則A B.C. D.9.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x≥0時,,則當x<0時,f(x)的表達式是A. B.C. D.10.若,則的值為A.0 B.1C.-1 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知弧長為cm2的弧所對的圓心角為,則這條弧所在的扇形面積為_____cm212.如果直線與直線互相垂直,則實數(shù)__________13.滿足的集合的個數(shù)是______________14.已知正實數(shù)滿足,則當__________時,的最小值是__________15.已知,則的最小值為___________16.若弧度數(shù)為2的圓心角所對的弦長為2,則這個圓心角所夾扇形的面積是___________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知四棱錐,其中面為的中點.(1)求證:面;(2)求證:面面;(3)求四棱錐的體積.18.已知(1)求的值(2)的值19.已知函數(shù),.(1)求函數(shù)的值域;(2)若存在實數(shù),使得在上有解,求實數(shù)的取值范圍.20.已知函數(shù).(1)求其最小正周期和對稱軸方程;(2)當時,求函數(shù)的單調(diào)遞減區(qū)間和值域.21.已知函數(shù)在一個周期內(nèi)的圖象如圖所示(1)求的解析式;(2)直接寫出在區(qū)間上的單調(diào)區(qū)間;(3)已知,都成立,直接寫出一個滿足題意的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)函數(shù)的奇偶性和周期性進行求解即可.【詳解】因為,所以函數(shù)的周期為,因為函數(shù)是奇函數(shù),當時,,所以,故選:A2、D【解析】結(jié)合P點的運動軌跡以及二次函數(shù),三角形的面積公式判斷即可【詳解】解:P點在AD上時,△APQ是等腰直角三角形,此時f(x)=?x?x=x2,(0<x<2)是二次函數(shù),排除A,B,P在DC上時,PQ不變,AQ增加,是遞增的一次函數(shù),排除C,故選D【點睛】本題考查了數(shù)形結(jié)合思想,考查二次函數(shù)以及三角形的面積問題,是一道基礎(chǔ)題3、C【解析】由函數(shù)是冪函數(shù)可得,解得或2,再討論單調(diào)性即可得出.【詳解】是冪函數(shù),,解得或2,當時,在上是減函數(shù),符合題意,當時,在上是增函數(shù),不符合題意,.故選:C.4、D【解析】利用函數(shù)的奇偶性的定義逐一判斷即可.【詳解】A,因為函數(shù)定義域為:,且,所以為奇函數(shù),故錯誤;B,因為函數(shù)定義域為:R,,而,所以函數(shù)為非奇非偶函數(shù),故錯誤;C,,因為函數(shù)定義域為:R,,而,所以函數(shù)為非奇非偶函數(shù),故錯誤;D,因為函數(shù)定義域為:R,,所以函數(shù)為偶函數(shù),故正確;故選:D.5、B【解析】由題可得函數(shù)為減函數(shù),根據(jù)單調(diào)性可求解參數(shù)的范圍.【詳解】由題可得,函數(shù)為單調(diào)遞減函數(shù),當時,若單減,則對稱軸,得:,當時,若單減,則,在分界點處,應(yīng)滿足,即,綜上:故選:B6、A【解析】化簡得出,即可求出最小正周期.【詳解】,最小正周期.故選:A.7、A【解析】本道題目分別結(jié)合平面與平面平行判定與性質(zhì),平面與平面平行垂直判定與性質(zhì),即可得出答案.【詳解】A選項,結(jié)合一條直線與一平面垂直,則過該直線的平面垂直于這個平面,故正確;B選項,平面垂直,則位于兩平面的直線不一定垂直,故B錯誤;C選項,可能平行于與相交線,故錯誤;D選項,m與n可能異面,故錯誤【點睛】本道題目考查了平面與平面平行判定與性質(zhì),平面與平面平行垂直判定與性質(zhì),發(fā)揮空間想象能力,找出選項的漏洞,即可.8、B【解析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性分別求出的范圍,即可得結(jié)果.【詳解】根據(jù)指數(shù)函數(shù)的單調(diào)性可得,根據(jù)對數(shù)函數(shù)的單調(diào)性可得,則,故選B.【點睛】本題主要考查對數(shù)函數(shù)的性質(zhì)、指數(shù)函數(shù)的單調(diào)性及比較大小問題,屬于中檔題.解答比較大小問題,常見思路有兩個:一是判斷出各個數(shù)值所在區(qū)間(一般是看三個區(qū)間);二是利用函數(shù)的單調(diào)性直接解答;數(shù)值比較多的比大小問題也可以兩種方法綜合應(yīng)用.9、A【解析】由題意得,當時,則,當時,,所以,又因為函數(shù)是定義在上的奇函數(shù),所以,故選A考點:函數(shù)的奇偶性的應(yīng)用;函數(shù)的表達式10、A【解析】由題意得a不等于零,或,所以或,即的值為0,選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先求出半徑,再用扇形面積公式求解即可.【詳解】由已知半徑為,則這條弧所在的扇形面積為.故答案為:.12、或2【解析】分別對兩條直線的斜率存在和不存在進行討論,利用兩條直線互相垂直的充要條件,得到關(guān)于的方程可求得結(jié)果【詳解】設(shè)直線為直線;直線為直線,①當直線率不存在時,即,時,直線的斜率為0,故直線與直線互相垂直,所以時兩直線互相垂直②當直線和斜率都存在時,,要使兩直線互相垂直,即讓兩直線的斜率相乘為,故③當直線斜率不存在時,顯然兩直線不垂直,綜上所述:或,故答案為或.【點睛】本題主要考查兩直線垂直的充要條件,若利用斜率之積等于,應(yīng)注意斜率不存在的情況,屬于中檔題.13、4【解析】利用集合的子集個數(shù)公式求解即可.【詳解】∵,∴集合是集合的子集,∴集合的個數(shù)為,故答案為:.14、①.②.6【解析】利用基本不等式可知,當且僅當“”時取等號.而運用基本不等式后,結(jié)合二次函數(shù)的性質(zhì)可知恰在時取得最小值,由此得解.【詳解】解:由題意可知:,即,當且僅當“”時取等號,,當且僅當“”時取等號.故答案為:,6.【點睛】本題考查基本不等式的應(yīng)用,同時也考查了配方法及二次函數(shù)的圖像及性質(zhì),屬于基礎(chǔ)題.15、【解析】根據(jù)基本不等式,結(jié)合代數(shù)式的恒等變形進行求解即可.【詳解】解:因為a>0,b>0,且4a+b=2,所以有:,當且僅當時取等號,即時取等號,故答案為:.16、【解析】根據(jù)所給弦長,圓心角求出所在圓的半徑,利用扇形面積公式求解.【詳解】由弦長為2,圓心角為2可知扇形所在圓的半徑,故,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析;(3).【解析】(1)取中點,連接,根據(jù)三角形的中位線,得到四邊形為平行四邊形,進而得到,再結(jié)合線面平行的判定定理,即可證明面;(2)根據(jù)為等邊三角形,為的中點,面,得到,根據(jù)線面垂直的判定定理得到面,則面,再由面面垂直的判定定理,可得面面;(3)連接,可得四棱錐分為兩個三棱錐和,利用體積公式,即可求解三棱錐的體積.試題解析:(1)證明:取中點,連接分別是的中點,,且與平行且相等,為平行四邊形,,又面面面.(2)證明:為等邊三角形,,又面面垂直于面的兩條相交直線面面面面面.(3)連接,該四棱錐分為兩個三棱錐和.18、(1)(2)【解析】(1)先求出的值,再求出后可得的值;(2)先求出,再利用二倍角公式化簡三角函數(shù)式,代入前面的結(jié)果可得所求的值.【小問1詳解】對于,兩邊平方得,所以,∴,∵且,,所以,;【小問2詳解】聯(lián)立,解得,∴原式=.19、(1)(2)【解析】(1)結(jié)合題意得Mx=log2x,0<x<2(2)由題知,進而換元得在上有解,再根據(jù)對勾函數(shù)求最值即可;【小問1詳解】解:函數(shù),因為,所以當時,,.當時,,.即Mx當時,;當時,.綜上:值域為.【小問2詳解】解:可以化為即:令,,所以,所以所以在上有解即在上有解令,則而當且僅當,即時取等號所以實數(shù)的取值范圍是20、(1)最小正周期為,對稱軸方程;(2)單調(diào)遞減區(qū)間為,值域為.【解析】(1)利用倍角公式、輔助角公式化簡函數(shù),結(jié)合正弦函數(shù)的性質(zhì)計算作答.(2)確定函數(shù)的相位范圍,再借助正弦函數(shù)的性質(zhì)計算作答.【小問1詳解】依題意,,則,由解得:,所以,函數(shù)的最小正周期為,對稱軸方程為.【小問2詳解】由(1)知,因,則,而正弦函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,由解得,由解得,因此,在上單調(diào)遞減,在上單調(diào)遞增,,而,即,所以函數(shù)單調(diào)遞減區(qū)間是,值域為.21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能化打樁機械租賃服務(wù)規(guī)范協(xié)議4篇
- 2025年度特色菜品研發(fā)廚房廚師長聘用合同4篇
- 2024物流運輸合同參考模板
- 2024版?zhèn)鶛?quán)轉(zhuǎn)股權(quán)協(xié)議書
- 中國豬的飼養(yǎng)市場前景及投資研究報告
- 2025年度二手房交易擔保合同模板4篇
- 2025年度個人股權(quán)投資基金設(shè)立與運營協(xié)議4篇
- 2025年洗車店租賃及售后服務(wù)保障合同3篇
- 2025年度高端制造行業(yè)個人技術(shù)工人派遣合同2篇
- 2025年度個人房產(chǎn)買賣合同稅收籌劃協(xié)議3篇
- 肺動脈高壓的護理查房課件
- 2025屆北京巿通州區(qū)英語高三上期末綜合測試試題含解析
- 公婆贈予兒媳婦的房產(chǎn)協(xié)議書(2篇)
- 煤炭行業(yè)智能化煤炭篩分與洗選方案
- 2024年機修鉗工(初級)考試題庫附答案
- Unit 5 同步練習人教版2024七年級英語上冊
- 矽塵對神經(jīng)系統(tǒng)的影響研究
- 分潤模式合同模板
- 海南省汽車租賃合同
- 2024年長春醫(yī)學高等專科學校單招職業(yè)適應(yīng)性測試題庫必考題
- (正式版)SHT 3046-2024 石油化工立式圓筒形鋼制焊接儲罐設(shè)計規(guī)范
評論
0/150
提交評論