版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
五年級可能性ppt課件目錄CATALOGUE可能性簡介概率基礎(chǔ)條件概率隨機(jī)變量期望與方差可能性的實(shí)例應(yīng)用可能性簡介CATALOGUE01什么是可能性可能性是指對未來發(fā)生的事情或結(jié)果的可能性評估或預(yù)測。它是一個廣泛的術(shù)語,可以用于描述從完全確定到完全不確定的任何情況。在數(shù)學(xué)和統(tǒng)計(jì)學(xué)中,可能性通常被表示為概率,這是一個在0到1之間的數(shù)值,其中0表示不可能發(fā)生,1表示一定會發(fā)生。在特定情況下,某些事件是確定要發(fā)生的,比如“明天太陽一定會升起”。確定事件在特定情況下,某些事件是不確定是否會發(fā)生,比如“明天會不會下雨”。不確定事件在特定情況下,某些事件是隨機(jī)發(fā)生的,比如“擲一枚硬幣正面朝上的概率是0.5”。隨機(jī)事件可能性的分類風(fēng)險評估在面對潛在的負(fù)面結(jié)果時,可以使用可能性來評估發(fā)生這些結(jié)果的概率,以便更好地管理風(fēng)險。決策分析在面對多個可能的行動方案時,可以使用可能性來評估每個方案的成功概率,從而做出更明智的決策。預(yù)測分析在需要預(yù)測未來趨勢或結(jié)果時,可以使用可能性來評估各種可能的結(jié)果,從而做出更準(zhǔn)確的預(yù)測??赡苄缘膽?yīng)用場景概率基礎(chǔ)CATALOGUE020102概率的定義在概率論中,概率通常被定義為事件發(fā)生的次數(shù)與總次數(shù)之比。概率是指某一事件發(fā)生的可能性,通常用分?jǐn)?shù)、小數(shù)或百分?jǐn)?shù)表示。概率具有非負(fù)性,即概率值在0到1之間,不可能為負(fù)數(shù)。概率具有規(guī)范性,即所有可能事件的概率之和等于1。概率具有可傳遞性,即如果A導(dǎo)致B,B導(dǎo)致C,則A導(dǎo)致C。概率的特性概率的基本公式是:P(A)=A的次數(shù)/總次數(shù)若總次數(shù)為n,事件A的次數(shù)為k,則P(A)=k/n。若事件A與B互斥,則P(A+B)=P(A)+P(B)。若事件A與B獨(dú)立,則P(A×B)=P(A)×P(B)。01020304概率的計(jì)算條件概率CATALOGUE03在B發(fā)生的情況下,A發(fā)生的概率稱為A在B下的條件概率,記作P(A|B)。定義描述了一個事件B已經(jīng)發(fā)生的情況下,另一個事件A發(fā)生的概率。解釋條件概率的定義投擲兩個骰子,A為得到兩個相同的數(shù)字,B為得到兩個不同的數(shù)字。實(shí)例1P(A)P(B)得到兩個相同的數(shù)字的概率,例如兩個1或兩個2等。得到兩個不同的數(shù)字的概率,例如一個1和一個2等。030201條件概率的應(yīng)用B):在得到兩個不同數(shù)字的情況下,得到兩個相同數(shù)字的概率。P(A盒子里有5個紅球和3個白球,A為抽到紅球,B為抽到白球。實(shí)例2抽到紅球的概率。P(A)條件概率的應(yīng)用P(B)抽到白球的概率。P(AB):在抽到白球的情況下,抽到紅球的概率。條件概率的應(yīng)用貝葉斯定理用于計(jì)算在給定某種情況下,另一種情況發(fā)生的概率。描述在醫(yī)學(xué)診斷、市場預(yù)測等領(lǐng)域有廣泛應(yīng)用。應(yīng)用P(A|B)=[P(B|A)*P(A)]/P(B)公式貝葉斯定理隨機(jī)變量CATALOGUE04隨機(jī)變量的特點(diǎn)隨機(jī)變量表示的是在一定條件下,可能出現(xiàn)的不同結(jié)果。隨機(jī)變量的命名通常用大寫字母表示隨機(jī)變量,如X,Y等。定義在一定條件下,所有可能的結(jié)果稱為隨機(jī)變量。隨機(jī)變量的定義只能取有限個或可數(shù)個值,如擲硬幣的正面或反面。可以取某個區(qū)間的任意實(shí)數(shù),如人的身高。隨機(jī)變量的分類連續(xù)型隨機(jī)變量離散型隨機(jī)變量可加性可乘性有限可加性零均值隨機(jī)變量的性質(zhì)01020304若兩個隨機(jī)變量X和Y相互獨(dú)立,則X+Y也是一個隨機(jī)變量。若兩個隨機(jī)變量X和Y相互獨(dú)立,則XY也是一個隨機(jī)變量。對于有限個兩兩獨(dú)立的隨機(jī)變量之和仍然是隨機(jī)變量。對于任何隨機(jī)變量,其數(shù)學(xué)期望E(X)總是等于0。期望與方差CATALOGUE05期望是一個數(shù)學(xué)概念,表示隨機(jī)變量取某個值的概率加權(quán)平均值。期望是用來衡量隨機(jī)變量取值的可能性或相對重要性的。期望值的大小反映了隨機(jī)變量取該值的概率大小。期望的定義首先列出隨機(jī)變量的所有可能取值。將每個取值乘以對應(yīng)的概率,然后求和。確定每個可能取值的概率。期望值等于每個可能取值乘以該取值概率的總和。期望的計(jì)算方法方差是衡量隨機(jī)變量取值分散程度的指標(biāo)。方差越大,說明隨機(jī)變量的取值越分散;方差越小,說明隨機(jī)變量的取值越集中。方差的計(jì)算方法:首先找出隨機(jī)變量的期望值,然后將每個數(shù)據(jù)點(diǎn)與期望值的差的平方加起來,最后再除以數(shù)據(jù)點(diǎn)的數(shù)量。方差的定義及計(jì)算方法可能性的實(shí)例應(yīng)用CATALOGUE06123分析擲骰子游戲的可能性,如點(diǎn)數(shù)、出現(xiàn)的概率等。骰子游戲分析各種牌型出現(xiàn)的概率,如皇家同花順、順子、對子等。撲克牌游戲預(yù)測獲勝的概率及賠率,制定合理的投注策略。賭馬、賭球等賽事賭博游戲的可能性分析03風(fēng)向、風(fēng)力預(yù)測風(fēng)向、風(fēng)力的大小及變化。01天氣預(yù)報預(yù)測晴天、雨天、雪天等不同天氣的概率。02溫度變化預(yù)測每天溫度變化的趨勢,如日最高溫度和最低溫度。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新能源汽車指標(biāo)租賃與電池更換服務(wù)協(xié)議3篇
- 2025版環(huán)保設(shè)備研發(fā)與銷售合同4篇
- 2025版零星土建工程綠色建材采購合同4篇
- 美容院商鋪?zhàn)赓U合同(2025版):美容美體項(xiàng)目經(jīng)營租賃協(xié)議2篇
- 二零二五年度知識產(chǎn)權(quán)擔(dān)保抵押合同2篇
- 二零二五年度高空作業(yè)安全責(zé)任協(xié)議書3篇
- 二零二四員工自愿放棄社保并簽署無社保工作協(xié)議書3篇
- 二零二五年度汽車租賃車輛租賃合同解除協(xié)議2篇
- 二零二五版船舶尾氣排放處理技術(shù)與市場份額轉(zhuǎn)讓合同3篇
- 二零二五年度城市留守兒童托管合作協(xié)議4篇
- 福建省地方標(biāo)準(zhǔn)《先張法預(yù)應(yīng)力混凝土管樁基礎(chǔ)技術(shù)規(guī)程》DBJ13-2023
- 危險作業(yè)監(jiān)護(hù)人員培訓(xùn)
- 職業(yè)病防治企業(yè)臺賬樣本
- 充電樁驗(yàn)收表
- 城市水環(huán)境新型污染物的去除新技術(shù)課件
- 中長期貸款按實(shí)際投向統(tǒng)計(jì)統(tǒng)計(jì)制度
- 新媒體營銷完整版教學(xué)課件最全ppt整套教程電子講義(最新)
- 鍋爐專業(yè)2020年防非停措施
- 鼻炎營銷模式策劃書課件(PPT 40頁)
- 中國鐵塔股份有限公司通信鐵塔、機(jī)房施工及驗(yàn)收規(guī)范(試行)
- 線路綜合檢修施工方案
評論
0/150
提交評論