《車用驅動電機原理與控制基礎 第2版》 課件全套 鐘再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第1頁
《車用驅動電機原理與控制基礎 第2版》 課件全套 鐘再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第2頁
《車用驅動電機原理與控制基礎 第2版》 課件全套 鐘再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第3頁
《車用驅動電機原理與控制基礎 第2版》 課件全套 鐘再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第4頁
《車用驅動電機原理與控制基礎 第2版》 課件全套 鐘再敏 Chapter 1 Introduction-Chapter 8 Control Methods_第5頁
已閱讀5頁,還剩255頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter1

Introduction21.1TheBriefHistoryofElectricMotors1)“AccumulationofMotorTechnologyStage”:Theoriginofmotortechnologycanbetracedbackto1831whenFaradayinventedthedisc-typemotor.Theperiodtilltothesuccessfulinventionofthehigh-powerdirectcurrentgeneratorsin1866canbecalled“accumulationofmotortechnologystage”.2)“IndustrialApplicationofDCMotors”:In1866,theGermanengineerSiemenssuccessfullydevelopedself-excitedandcompound-woundhigh-powerDCgenerators,markingthebeginningoftheconversionofhigh-powermechanicalenergyintoelectricalenergy,andsparkingthelate19th-century“electrification”revolution.Thedevelopmentofmotortechnologyalsoentereditsfirstgoldendevelopmentperiod:“thematurestageofthemotortechnology.3)“InventionofACMotors”:Inthefirsthalfofthe19thcentury,variousACmotorswerecontinuouslyinventedanddeveloped,usheringinthefirstgoldenageofextensiveindustrialapplicationsofmotors.

4)“PowerElectronicsEnabledSpeedControlofACMotors”:ThedevelopmentofpowersemiconductortechnologygreatlypromotestheadvancementofthespeedcontroltechnologyofACmotors.Fig.1-1PhysicalModelandCircuitDiagramofFaraday'sDiscGeneratorin1831Fig.1-2DiagramoftheMotorInventedbySteckinFig.1-3DiagramoftheMotorInventedbyPixie31.2CharacteristicsandCommonTypesofVehicleDriveMotorsDuetothespecificapplicationrequirementsinelectricvehicles,vehicledrivemotorshavedistinctivetechnicalcharacteristics:1)HighPower-to-WeightRatio:Lightweightisdirectlycontributedtovehicle'sefficiency,sounlikeindustrialmotorsforfixedapplicationequipment,vehicledrivemotorsgenerallyrequirethehighestpossiblepower-to-weightratio.2)HighPower-to-VolumeRatio:Optimizingtheavailablespaceinvehiclesisacontinuouslychallenge.Amorecompactmotorsystemmakesiteasiertomeetthevehicle'sneedsandallowsfordeeperintegrationforthesystemdesign.Therefore,thepower-to-volumeratioofthemotorshouldbeashighaspossible.3)HighEfficiency:Pursuinghighefficiencyisafundamentalrequirementforallmotorapplications.Oneofthekeycharacteristicsofvehicledrivemotorsisthattheyshouldhaveabroadhigh-efficiencyrange.It'snotjustabouthavinghighefficiencyatspecificoperatingpointsbuthavinghighefficiencyacrossawiderangeofspeedsandtorquestomeethighefficiencyrequirementsundervariousdrivingconditions.4)WideSpeedRange:Exceptforafewmodelsthatusegearboxeswithmultiplespeedratios,mostelectricvehicleshaveasinglefixed-ratioreducer.Tomeettheneedsofbothhigh-speeddrivingandlow-speedclimbing,vehicledrivemotorsmusthaveaverywidespeedrange.5)FastTorqueDynamicResponse:Vehicledrivemotorsoperatecontinuouslyundervaryingconditions.Afasttorquedynamicresponseisessentialforthedrivingexperienceofthedriverandacorekeyindicatorrelatedtothevehicle'ssafetyfunctions.6)HighShort-TimePeakPower:Thecontinuouspowerrequiredforsteady-statedrivingissignificantlylowerthantheshort-termpeakpowerneededforaccelerationconditions.However,accelerationconditionshavearelativelyshortduration.Therefore,thedifferencebetweenthe(short-term)peakpowerandthe(continuous)ratedpowercanbemorethandoubletimesinthedesignofvehicledrivemotors.7)LongLife,HighReliability,GoodEnvironmentalAdaptability,andLowCost.41)Inductionmotors(IMs),alsoknownasasynchronousmotors,arecharacterizedbytheirsimplestructure,convenientmanufacturing,robustness,lowcost,reliableoperation,lowtorqueripple,lownoise,noneedforpositionsensors,andhighspeedlimits.However,theirlimitationliesinaslipratecomparedtothesynchronousspeedoftheirrotatingmagneticfield,resultinginslightlypoorerspeedregulationperformance.Moreover,comparedtopermanentmagnetmotors,IMshavelowerefficiencyandpowerdensity.(2)Permanentmagnetsynchronousmotors(PMSMs)excelinpowerdensityandefficiency.Inaddition,theyexhibitprominentfeaturessuchasawidespeedrange,goodtorquecontrolperformance,simplestructure,andhighreliability,makingthemthepreferredtypeofmotorforautomotiveapplications.Forsomespecialapplications,suchasflatoraxialfluxstructuremotors,thetechnicaladvantagesofPMSMsareevenmorepronounced.Dependingontheinstallationpositionofthepermanentmagnetontherotor,theycanbeclassifiedintosurface-mounted(SPM)andinterior-mounted(IPM)types.Thelatterisfavoredinthedesignofvehicledrivemotorsduetothe"reluctancetorque"generatedbytherotor'ssaliencyeffect,whicheffectivelyimprovesthemotor'sefficiency.Forpermanentmagnetsynchronousmotorswithasquarewavebackelectromotiveforce,theyaresometimesclassifiedas"brushlessDCmotors."VehicledrivemotorsPermanentmagnetsynchronousmotors(PMSM)Inductionmotorssurface-mountedPMSMinterior-mountedPMSMFig.1-4CommonTypesofVehicleDriveMotors1.2CharacteristicsandCommonTypesofVehicleDriveMotors5DCBrushedMotorPMSMBasicComponentsandOperatingPrinciplesofthePermanentMagnetMotor61.3TypicalApplicationoftheVehicleDriveMotorTheISGmotor,alsoknownastheP1motor,itsinstalledposition,andstructuresareshowninFig.1-5.Themotorisdirectlyconnectedtotheengine,anditsrotorreplacesthetraditionalflywheel.Thisstructureminimallyaltersthetraditionalautomotivetransmissionsystem,offeringadvantagessuchasfewercomponents,lownoise,andrapidstart-up.Itiscurrentlythesimplestandmostmatureformofhybriddrive.TheinstallationoftheP2motorisattheinputendofthetransmission,asillustratedinFig.1-6.TheessentialdifferencefromtheISGconfigurationliesinanadditionalclutchbetweentheengineandthemotor,commonlyreferredtoastheK0clutch.Therefore,theP2motordriveconfigurationcanoperateinthreemodes:pureelectricdrive,internalcombustionenginedrive,andhybriddrive.SimilartotheISGconfigurationforhybridsystems,thereisnoneedtomodifythebasicstructureoftheoriginaltraditionalfuel-poweredvehicleengineandtransmission.Fig.1-5TheinstallationandstructureoftheISGmotorFig.1-6TheinstallationofP2motorstructure7Theintegrationofthemechanicalenergyoutputfromboththeinternalcombustionengineandtheelectricmotorinthetransmissioniscurrentlyacrucialtechnologicaldirectionforhybridelectricvehicles.Thisintegratedtransmission,alsoknownasaDedicatedHybridTransmission(DHT),operatesbyincorporatingoneormoreelectricmotorsintothetransmission,forminganautomatictransmissionsystemwithanelectricmotor.Thehybriddrivefunctionisachievedbysuperimposingtheinputpowerfromtheinternalcombustionengine.Toyota'sHybridSystem(THS)isatypicalexampleofaDHTtransmission.Thissystemutilizesthreepowersources,namely,theinternalcombustionengineanddualmotors(MG1,MG2).Throughaplanetarygearcoupling,itformsanelectronicallycontrolledcontinuouslyvariabletransmission.Thisconfigurationallowsforadual-degree-of-freedomadjustmentoftheenginespeedandtorquebasedondifferentvehicleconditions.WhendrivinginpureelectricmodewithmotorMG2,theenginechargesthebatterythroughmotorMG1.TheenginecanalsodrivethevehiclesimultaneouslywithelectricmotorMG2(orMG1).THSbelongstoapower-splithybridsystem,wheretorquedistributioniscontrolledbytheelectricmotorortheengine,enablingseamlessadjustmentofthetransmissionratio.Therefore,THSisalsoreferredtoasanelectronicallycontrolledcontinuouslyvariabletransmissionforelectricvehicles.Fig.1-7ThethirdgenerationoftheTHSsystemstructure1.3TheTypicalApplicationoftheVehicleDriveMotor8Thethree-in-oneelectricdrivesystem,integratingthemotor,controllerandreducer,isanimportantdirectioninthedevelopmentofautomotiveelectricdrivesystems.Theadvantagesofthisintegrateddesignareasfollows:Integrateddesignreducesthevolumeofthedrivesystem.Byconsolidatingthevariouscomponentsofthedrivesystemintoasingleunit,theoverallsystembecomesmorecompact,allowingforgreaterflexibilityinthelayoutofthevehicle'spowersystem.Integrateddesignreducestheweightofthedrivesystem.Withthehighdegreeofintegrationofmajorcomponents,theuseofconnectingwiresbetweencomponentsissignificantlyreduced,optimizingthesystem'sweightandresultinginlowerenergyconsumptionforthevehicle.Integrateddesigneffectivelyreducesthedistancebetweencomponents,optimizingenergytransmissionpaths,andfacilitatingthereductionoflosses.This,inturn,enhancestheoverallefficiencyofthepowertrain.Fig.1-8Three-in-oneelectricdrivesystem1.3TheTypicalApplicationoftheVehicleDriveMotor9Fig.1-9twodrivetypesofrimmotorandhubmotorCurrently,therearetwomaintypesofdrivesystemsforhubmotors:Thefirsttypeisknownasthe"rimmotor."Itstypicaltopologyisaninternalrotorandanexternalstator,asillustratedintheleftdiagraminFigure1-9.Theworkingprincipleinvolvesconnectingtherotor,servingastheoutputshaft,tothesungearofafixedreductionratioplanetarygearreducer.Thewheelhubisconnectedtotheringgear,amplifyingtheoutputtorqueofthehubmotorthroughasignificantreductionratio.Therefore,thismotorstructureisgenerallyahigh-speedinternalrotormotor.Thesecondtypeisthedirectdrivehubmotor,withatypicaltopologyofanexternalrotorandaninternalstator,asshownintherightdiagraminFigure1-9(b).Theworkingprincipleinvolvesdirectlyconnectingtheexternalrotortothewheelhubthroughafixeddevice.Whenthemotorisinoperation,thewheelrotatessynchronouslywiththemotor.Thus,thedirectdrivehubmotoristypicallyalow-speed,high-torqueexternalrotormotor.1.3TheTypicalApplicationoftheVehicleDriveMotor車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter1

Introduction車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter2

Magnetic

FieldandMagneticCircuit122.1TheGenerationandQuantificationofMagneticField2.1.1TheMagneticFieldanditsQuantification

132.1.1TheMagneticFieldanditsQuantification

Fig.2-2themagneticfluxthroughthecurvesurface142.1.2TheMagneticEffectofCurrentFig.2-3Themagneticfieldproducedbyanelementofcurrent(Biot-SavartLaw)

15

Fig.2-4Thearbitraryclosedlooppathforanelectriccurrent2.1.2TheMagneticEffectofCurrent

162.1.2TheMagneticEffectofCurrent

172.1.3Electromagneticforce(orLorentzforce)

Fig.2-6AparticleofchargeinamagneticfieldFig.2-7Aconductorinamagneticfield18

2.2ElectromagneticInduction19

Fig.2-9Motionalelectromotiveforce2.2ElectromagneticInduction20

2.2ElectromagneticInduction212.2Electromagneticinduction

222.3MagneticMedium

232.3MagneticMedium

Fig.2-2Ampère'scircuitallaw242.3MagneticMedium

Fig.2-14hysteresisloop

252.3MagneticMediumFig.2-5Hysteresisloopsofdifferentmagneticmediuma)softmagneticmaterialb)hardmagneticmaterialc)

ferritematerialofrectangularloop

262.3MagneticMedium

Fig.2-16Magneticenergyincables272.4MagneticCircuit,BasicLawsofMagneticCircuit2.4.1BasicLawsofMagneticCircuit

Fig.2-17Magneticcircuitofatransformer282.4.1BasicLawsofMagneticCircuitFig.2-18Non-branchedironcoremagneticcircuit

29

2.4.1BasicLawsofMagneticCircuit302.4.2ParallelandSeriesConnectionsofMagneticCircuits

31

2.4.2ParallelandSeriesConnectionsofMagneticCircuits322.4.2ParallelandSeriesConnectionsofMagneticCircuits

332.5TypicalDCMagneticCircuitFig.2-23Theironcoreofdoublecoilexcitationanditsequivalentcircuitdiagram

342.5.1Doublecoilexcitation,fluxlinkage2.5.1DoubleCoilExcitation,FluxLinkage

35

2.5.1DoubleCoilExcitation,FluxLinkage36

2.5.1DoubleCoilExcitation,FluxLinkage372.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-24PermanentMagnetMagneticCircuitwithanAirGap

382.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-25Demagnetizationcurveofpermanentmagnet

392.5.2CalculationFeaturesofPermanentMagneticCircuitFig.2-26Determinationofpermanentmagnetoperatingpoint

Duetothefactthatthedemagnetizationcurveofapermanentmagnetisnotnecessarilyastraightline,andadditionally,themagneticcircuitmayalsocontainnonlinearironcoresegments,thisbecomesanonlinearproblem.Therefore,itisconvenienttosolveitusinggraphicalmethods.402.5.2CalculationFeaturesofPermanentMagneticCircuit

車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter2

Magnetic

FieldandMagneticCircuitChapter3

ElectromechanicalEnergyConversionandElectromagneticTorqueGeneration車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors433.1ElectromagneticSystem/LinearMotorModelwithMechanicalPortsFig.2-6Freechargeinamagneticfield

44Fig.3-1Theforcesituationofanenergizedconductorinthemagneticfield

3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts45Fig.3-2Motionsynthesisoftheelectricchargesintheenergizedconductorandforcesynthesisinthemagneticfield

3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts46Theelectromechanicalenergyconversionofoperationprocessforthemotorismuchmorecomplicatedthanthislinearmotor.However,theelectromechanicalenergyconversionprocesshasthefollowingbasiccharacteristics:1)Lorentzforceisthemicrophysicalbasisoftheelectromechanicalenergyconversion;2)Magneticfieldisanimportantmediatorintheelectromechanicalenergyconversion,butmagneticenergydoesnotnecessarilyincreaseordecrease;3)Theelectromechanicalenergyconversionmusthavetwoenergycouplingports:mechanicalportandelectricalport.Thereshouldbe“potentialquantities”actingontheports:themechanicalportisforceortorque,andtheelectricalportiselectricpotentialorelectricfield;4)Theinducedelectromotiveforceisanecessaryconditionforobtainingorreturningelectricalenergyfromelectricalports.Notethatinthiscase,itisassumedthatthemagneticfieldisconstantandtheinfluenceofthemagneticfieldaroundtheenergizedconductorisignored.Thiscasedoesnotreflecttheactualoperatingconditionsofthemotor.Inreality,thereisanarmaturereactionprocessinthemotor,wheretheairgapmagneticfieldisthecompositemagneticfieldofthearmaturefieldandtherotorfield.3.1ElectromagneticSystem/LinearMotorModelwithMechanicalPorts473.2EnergyStorageintheElectromagneticSystem:MagneticEnergyandMagneticCoenergy

Fig.3-3Separatingthelossesmakesthesystema“magneticenergystoragesystemwithoutlosses”Port

MechanicallossLosslessMagneticEnergyStorageSystem483.2.2MagneticEnergyandMagneticCoenergyFig.3-4Ironcorewithdoublecoilexcitation

493.2.2MagneticEnergyandMagneticCoenergy

503.2.2MagneticEnergyandMagneticCoenergy

Fig.3-6Integrationpathofmagneticenergy513.2.2MagneticEnergyandMagneticCoenergy

523.3GenerationandUnifiedExpressionofElectromagneticTorque

Fig.3-7Electromechanicaldeviceswithstatorandrotorwindingsandairgaps533.3GenerationandUnifiedExpressionofElectromagneticTorque

543.3GenerationandUnifiedExpressionofElectromagneticTorque

553.3GenerationandUnifiedExpressionofElectromagneticTorque

Fig.3-8GenerationofreluctancetorqueFig.3-9Variationcurveofstatorwindingself-inductance563.3GenerationandUnifiedExpressionofElectromagneticTorqueFig.3-9Reluctancetorquevarieswithrotorposition

Fig.3-8Generationofreluctancetorque

57Faraday‘sLawofElectromagneticInduction(fromMagnetic

Electricity)Faraday'sLawofElectromagneticInduction:Thephenomenonofelectromagneticinductionreferstothegenerationofaninducedelectromotiveforce(EMF)duetothechangeofmagneticflux.ThedirectionoftheinducedemfinFaraday'sLawofElectromagneticInductioncanbedeterminedbyLenz'sLaw:Theinducedcurrent'smagneticfieldopposesthechangeintheoriginalmagneticflux.

Mechanicalsystem(singlemass)

ElectromagneticsystemNewton'sFirstandSecondLawsofMotion:Newton'sFirstLawofMotion,alsoknownastheLawofInertia.Itisstatedasfollows:Anobjectwillremaininmotionoratrest,unlessacteduponbyanexternalforce.Newton'sSecondLawofMotion:Theaccelerationofanobjectisdirectlyproportionaltothenetforceactingonit,isinthesamedirectionasthenetforce,andisinverselyproportionaltotheobject'smass.ForceisthecauseofchangesinmotionVoltageandthechangeoffluxlinkagearemutuallycausal58ThePrincipleofElectromechanicalEnergyConversionofMotorsMaxwellappliedtheLagrangianmethodtodescribethedynamicsofelectromechanicalcoupledsystems.Hederivedthesystem'sequationsofmotionfromthefundamentallawsofmechanicsandelectromagnetics,resultinginthe“Lagrangian-Maxwellequations”.

Lagrangian-Maxwellequations:Mechanicalsystem(singlemass)Electromagneticsystem59

Fig.3-12electromagnet3.4TheDefinationofSpaceVector60

3.4TheDefinationofSpaceVector61Fig.4-11a)Themagneticfieldgeneratedbythefullpitchcoil

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings62Fig4-11b)Thewavefunctionofmagnetomotiveforceforfullpitchcoil

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings63

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings64

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings65Fig.4-16Three-phasefundamentalwavesatdifferenttimesFig.4-17rotatingmagnetomotiveforcewave

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings66Fig.4-18Thespacecomplexplanecorrespondingtotheaxialcross-sectionofthemotor

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings67TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings

68Fig.4-21Thecurrentvectorsofstatorandrotorareequivalenttothe"axiscoil“currentvectors

TheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWindings69Fig.4-20Thestatormagnetomotiveforcevectoranditsmovingtrajectory

Fig.4-22Thecosine-distributedmagneticfieldgeneratedbytheA-phasewindinga)Cosine-distributedMMFwaveb)Expandingofcosine-distributedmagneticfieldTheCompositeFluxLinkageWaveofOrthogonalTwo-phaseWinding703.5VectorExpressionofElectromagneticTorqueFig.4-27Synthesisofstatorandrotormagnetomotiveforcespacevector

71Fig.4-27Synthesisofstatorandrotormagnetomotiveforcespacevector

3.5VectorExpressionofElectromagneticTorque72ElectromagneticLoadofMotors

73ElectromagneticLoadGiventhevolumeofthemotor,theelectromagneticloaddeterminesthemotor'soutputtorquecapability.Inotherwords,foradesiredoutputtorque,thelargertheelectromagneticload,thesmallerthemotorvolume.Increasingtorqueoutputcapabilitymainlydependsonthemagneticloadandelectricalload.Increasingtheelectromagneticloadisbeneficialforachievingtheminiaturizationandlightweightofthemotor.Theselectionofelectromagneticloadmainlyconsidersfactorsincluding:MotorcoolingconditionsGradeofmaterialsusedinthemotorandinsulationstructurePowerandspeedofthemotorTherearemanyfactorstoconsiderwhenselectingelectromagneticload,makingitdifficulttodeterminesolelyfromtheory.Typically,referenceismadetolong-termaccumulatedempiricaldatainthemotorindustry,andselectionismadeafteranalyzingandcomparingthesimilaritiesanddifferencesinmaterials,structures,andtechnicalrequirementsbetweenthedesignedmotorandexistingmotorsinuse.74ElectromagneticLoad

Chapter3

ElectromechanicalEnergyConversionandElectromagneticTorqueGeneration車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter4

EntrainmentElectromotiveForceandPrototypeMotorModel車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors77

4.1RotatingReferenceFrameandEntrainmentElectromotiveForce78

RotatingReferenceFrameandRotationalTransformationofSpaceVector79RotatingReferenceFrameandRotationalTransformationofSpaceVectorFig.4-24StaticαβcoordinatesystemandarbitrarysynchronousrotatingDQcoordinatesystem

80

EntrainmentMotionandtheInducedMotionalElectromotiveForce81

EntrainmentaccelerationEntrainmentMotionandtheInducedMotionalElectromotiveForce82Faraday’sReferenceFrameandEntrainmentElectromotiveForceAnalysisofmotioninthenon-inertialreferenceframeInmechanicalsystem:(Non-inertial)referenceframeandinertialforce.83Faraday’sReferenceFrameandEntrainmentElectromotiveForce[1]鐘再敏,王業(yè)勤.電機模型中牽連運動及其動生電動勢的數(shù)理表達[J].電機與控制應用,2023,50(1):30-34.

84

Faraday’sReferenceFrameandEntrainmentElectromotiveForce85TheApplicationsofFaradayreferenceframes

864.2Four-coilPrototypeMotorModel

87

Four-coilPrototypeMotorModel88Four-coilPrototypeMotorModel

89

Four-coilPrototypeMotorModel90

AnyarbitraryMTrotatingcoordinatesystemFour-coilPrototypeMotorModel91

Four-coilPrototypeMotorModelAnyarbitraryMTrotatingcoordinatesystem92Closed-loopControlCharacteristicsofPrototypeMotorModel

93Closed-loopControlCharacteristicsofPrototypeMotorModel

94

Closed-loopControlCharacteristicsofPrototypeMotorModel

95Closed-loopControlCharacteristicsofPrototypeMotorModel96

Closed-loopControlCharacteristicsofPrototypeMotorModel97

Closed-loopControlCharacteristicsofPrototypeMotorModel98TheSpaceVectorDiagramofthePrototypeMotorModelwithNon-salientPole

99

TheSpaceVectorDiagramofthePrototypeMotorModelwithSalientPole1004.3Input-OutputCharacteristicsoftheFour-coilPrototypeMotorModelClosed-loopControlCharacteristicsofPrototypeMotorModel

101PowerBalanceRelationshipofthePrototypeMotorModelThefigureaboveshowstherealpowerflowofthefour-coilmotormodel.Wedefinethepositivedirectionofpowerflowasfollows:Thedirectionofpowerflowisconsideredpositivewhenelectricalenergyfromthestator-sidepowersupplyistransferredtotheair-gapmagneticfield.Thedirectionofpowerflowisalsoconsideredpositivewhenelectricalenergyfromtherotor-sidepowersupplyistransferredtotheair-gapmagneticfield,resultinginthegenerationofelectromagnetictorqueandtheoutputofmechanicalpowerfromtherotor.

102RealPower

103ReactivePower

1044.4AnalyzingtheDCMotorandTransformerbasedonthePrototypeMotorModelMultiphaseTransformerDCMotorSynchronousReluctanceMotorInductionMotorPermanentMagnetSynchronousMotorDoublyFedInductionGenerator105ImplementationofPrototypeMotorModel:DCMotor

Four-CoilPrototypeMotorModelofDCMotor106

ImplementationofPrototypeMotorModel:DCMotorFour-CoilPrototypeMotorModelofDCMotor107

ImplementationofPrototypeMotorModel:Two-phaseOrthogonalTransformerFour-CoilPrototypeMotorModelofTwo-phaseOrthogonalTransformerChapter4

EntrainmentElectromotiveForceandPrototypeMotorModel車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotorsChapter5

Three-phaseACWindingandItsMagneticField車用驅動電機原理與控制基礎(第2版)PrincipleandControlFundamentalsofVehicleDriveMotors1105.1BasicsofThree-phaseACCircuits

1115.2TypicalACWindingStructure5.2.1ClassificationandMainDesignParametersofACWindingTypically,conductorsmadeofsurface-insulatedcopperarefirstwoundintomulti-turncoils,alsoknownascoilelements.Thesecoilsarethenplacedinsuitableslotsonthestator.Acoilconsistsofmultipleturnsofconductor,andtheportionembeddedinthecoreslotsiscalledtheeffectivesegment,whiletheportionsonbothsidesofthecorearecalledtheendportions.Thenumberofslotsspannedbyacoilelementiscalledthecoilpitch,denotedby??.Basedonsinglecoilelement,coilsfromthesamephaseunderthesamemagneticpolearefirstconnected(inseries),andthencoilsfromthesamephasebutunderdifferentmagneticpolesareconnected(eitherinseriesorinparallel)toformaphasewinding.Intermsofthenumberofphases,ACwindingscanbedividedintosingle-phaseandmulti-phasewindings.

Generally,??isusedtorepresentthenumberofphasesofthemotorstatorwinding.Accordingtothenumberofslotsperpoleperphase,itcanbedividedintointegerslotandfractionalslotwindings.Accordingtothenumberoflayersintheslot,itisdividedintosingle-layeranddouble-layerwindings.Accordingtothepitchofthecoil,itcanbedividedintoconcentratedwindinganddistributedwinding.Windingscanalsobeclassifiedintolapwindingandwavewindingbasedontheirwindingmethods.1125.2.1ClassificationandMainDesignParametersofACWindingNameSymbolFormulaexpressionDefinitionPhasenumber

Thenumberofphasesofthestatoroutputterminals.Numberofpolepairs

Motormagneticfieldpolepairsnumberofslots

TotalnumberofstatorslotsCoilpitch

ThenumberofslotsspannedbythecoilelementNumberofparallelpathsThenumberofparallelbranchesperphasewindingPoledistanceNumberofstatorslotsper(rotor)magneticpoleNumberofslotsperpoleperphaseSlotareaoccupiedbyeachphaseundereachpoleSlotpitchangleSpatialelectricalangledifferencebetweentwoadj

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論