版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆云南省楚雄州民族實驗中學(xué)高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角A,B,C的對邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形2.已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為A,若雙曲線的一條漸近線與直線AM平行,則實數(shù)n的值是()A. B.C. D.3.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.34.已知函數(shù)在區(qū)間上是增函數(shù),則實數(shù)的取值范圍是()A. B.C. D.5.長方體中,,,,為側(cè)面內(nèi)(含邊界)的動點,且滿足,則四棱錐體積的最小值為()A. B.C. D.6.已知長方體中,,,則直線與所成角的余弦值是()A. B.C. D.7.已知點的坐標(biāo)為(5,2),F(xiàn)為拋物線的焦點,若點在拋物線上移動,當(dāng)取得最小值時,則點的坐標(biāo)是A.(1,) B.C. D.8.若將一個橢圓繞其中心旋轉(zhuǎn)90°,所得橢圓短軸兩頂點恰好是旋轉(zhuǎn)前橢圓的兩焦點,這樣的橢圓稱為“對偶橢圓”,下列橢圓中是“對偶橢圓”的是()A. B.C. D.9.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.10.《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,冬至、立春、春分日影之和為三丈一尺五寸,前九個節(jié)氣日影之和為八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),問立夏日影長為()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸11.下列關(guān)系中,正確的是()A. B.C. D.12.(一)單項選擇函數(shù)在處的導(dǎo)數(shù)等于()A.0 B.C.1 D.e二、填空題:本題共4小題,每小題5分,共20分。13.若“x2-2x-8>0”是“x<m”的必要不充分條件,則m最大值為________14.當(dāng)曲線與直線有兩個不同的交點時,實數(shù)k的取值范圍是____________15.已知拋物線:,斜率為且過點的直線與交于,兩點,且,其中為坐標(biāo)原點(1)求拋物線的方程;(2)設(shè)點,記直線,的斜率分別為,,證明:為定值16.已知拋物線上一點到準(zhǔn)線的距離為,到直線:的距離為,則的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知三角形內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.18.(12分)設(shè),分別是橢圓()的左、右焦點,E的離心率為.短軸長為2.(1)求橢圓E的方程:(2)過點的直線l交橢圓E于A,B兩點,是否存在實數(shù)t,使得恒成立?若存在,求出t的值;若不存在,說明理由.19.(12分)已知點在橢圓:上,橢圓E的離心率為.(1)求橢圓E的方程;(2)若不平行于坐標(biāo)軸且不過原點O的直線l與橢圓E交于B,C兩點,判斷是否可能為等邊三角形,并說明理由.20.(12分)已知函數(shù).(1)求函數(shù)的極值;(2)若對恒成立,求實數(shù)a的取值范圍.21.(12分)已知函數(shù).(1)證明:;(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.22.(10分)已知圓:,過圓外一點作圓的兩條切線,,,為切點,設(shè)為圓上的一個動點.(1)求的取值范圍;(2)求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】直接利用正弦定理以及已知條件,求出、、的關(guān)系,即可判斷三角形的形狀【詳解】解:在中,已知,,,分別為角,,的對邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【點睛】本題考查三角形的形狀的判斷,正弦定理的應(yīng)用,考查計算能力,屬于基礎(chǔ)題2、C【解析】首先根據(jù)拋物線焦半徑公式得到,從而得到,再根據(jù)曲線的一條漸近線與直線AM平行,斜率相等求解即可.【詳解】由題知:,解得,拋物線.雙曲線的左頂點為,,因為雙曲線的一條漸近線與直線平行,所以,解得.故選:C3、C【解析】由可得出,利用空間向量數(shù)量積的坐標(biāo)運(yùn)算可得出關(guān)于實數(shù)的等式,由此可解得實數(shù)的值.【詳解】若,則,所以,所以,解得.故選:C4、D【解析】由在上恒成立,再轉(zhuǎn)化為求函數(shù)的取值范圍可得【詳解】由已知,在上是增函數(shù),則在上恒成立,即,,當(dāng)時,,所以故選:D5、D【解析】取的中點,以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,分析可知點的軌跡是以點、為焦點的橢圓,求出橢圓的方程,可知當(dāng)點為橢圓與棱或的交點時,點到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點,以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,設(shè)點,其中,,則、,因為平面,平面,則,所以,,同理可得,所以,,所以點的軌跡是以點、為焦點,且長軸長為的橢圓的一部分,則,,,所以,點的軌跡方程為,點到平面的距離為,當(dāng)點為曲線與棱或棱的交點時,點到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.6、C【解析】建立空間直角坐標(biāo)系,設(shè)直線與所成角為,由求解.【詳解】∵長方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系,,則,,,,所以,,設(shè)直線與所成角為,則,∴直線和夾角余弦值是.故選:C.7、D【解析】過作準(zhǔn)線的垂線,垂足為,則,當(dāng)且僅當(dāng)三點共線時等號成立,此時,故,所以,選D8、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進(jìn)而判斷所給命題的真假【詳解】解:因為橢圓短的軸兩頂點恰好是旋轉(zhuǎn)前橢圓的兩焦點,即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:9、A【解析】根據(jù)不等式性質(zhì)及對數(shù)函數(shù)的單調(diào)性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復(fù)合命題真假的判斷方法即可得出結(jié)論.【詳解】解:若,且,則,當(dāng)時,,所以,當(dāng)時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.10、D【解析】結(jié)合等差數(shù)列知識求得正確答案.【詳解】設(shè)冬至日影長,公差為,則,所以立夏日影長丈,即四尺五寸.故選:D11、B【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調(diào)遞減,因為,所以,又,,因為在上單調(diào)遞增,所以,所以,所以,故B正確;對于C:因為在上單調(diào)遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調(diào)遞減,又,所以,又,所以,故D錯誤;故選:B12、B【解析】利用導(dǎo)數(shù)公式求解.【詳解】因為函數(shù),所以,所以,故選;B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】解不等式,得到或,,根據(jù)必要不充分條件,得到是A的真子集,從而求出,得到m的最大值.【詳解】,解得:或,所以記或,;若“x2-2x-8>0”是“x<m”的必要不充分條件,則是A的真子集故,所以m最大值為故答案為:-214、【解析】求出直線恒過的定點,結(jié)合曲線的圖象,數(shù)形結(jié)合,找出臨界狀態(tài),即可求得的取值范圍.【詳解】因為,故可得,其表示圓心為,半徑為的圓的上半部分;因為,即,其表示過點,且斜率為的直線.在同一坐標(biāo)系下作圖如下:不妨設(shè)點,直線斜率為,且過點與圓相切的直線斜率為數(shù)形結(jié)合可知:要使得曲線與直線有兩個不同的交點,只需即可.容易知:;不妨設(shè)過點與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.15、(1)(2)為定值6【解析】(1)由題意可知:將直線方程代入拋物線方程,由韋達(dá)定理可知:,,,,求得p的值,即可求得拋物線E的方程;(2)由直線的斜率公式可知:,,,代入,,即可得到:.試題解析:(1)直線的方程為,聯(lián)立方程組得,設(shè),,所以,,又,所以,從而拋物線的方程為(2)因為,,所以,,因此,又,,所以,即為定值點睛:定點、定值問題通常是通過設(shè)參數(shù)或取特殊值來確定“定點”是什么、“定值”是多少,或者將該問題涉及的幾何式轉(zhuǎn)化為代數(shù)式或三角問題,證明該式是恒定的.定點、定值問題同證明問題類似,在求定點、定值之前已知該值的結(jié)果,因此求解時應(yīng)設(shè)參數(shù),運(yùn)用推理,到最后必定參數(shù)統(tǒng)消,定點、定值顯現(xiàn).16、3【解析】根據(jù)拋物線的定義可知,點P到拋物線準(zhǔn)線的距離等于點P到焦點F的距離,過焦點F作直線:的垂線,此時取得最小值,利用點到直線的距離公式,即可求解.【詳解】由題意,拋物線的焦點坐標(biāo)為,準(zhǔn)線方程為,如圖所示,根據(jù)拋物線的定義可知,點P到拋物線準(zhǔn)線的距離等于點P到焦點F的距離,過焦點F作直線:的垂線,此時取得最小值,由點到直線的距離公式可得,即的最小值為3.【點睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,以及拋物線的最值問題,其中解答中根據(jù)拋物線的定義可知,點P到拋物線準(zhǔn)線的距離等于點P到焦點F的距離,利用點到直線的距離公式求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及運(yùn)算與求解能力,屬于中檔試題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進(jìn)一步求得面積【小問1詳解】因為,由正弦定理得因為,所以.因為角為鈍角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=18、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當(dāng)直線的斜率存在時,設(shè)直線的方程為,聯(lián)立直線的方程與橢圓方程化簡可得,設(shè),,可得,,由此證明,再證明當(dāng)直線的斜率不存在時也成立,由此確定存在實數(shù)t,使得恒成立【小問1詳解】由已知得,離心率,所以,故橢圓E的方程為.【小問2詳解】當(dāng)直線l的斜率存在時,設(shè),,,聯(lián)立方程組得,,所以,..,,所以.所以.當(dāng)直線l的斜率不存在時,,聯(lián)立方程組,得,.,,所以.綜上,存在實數(shù)使得恒成立.【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程的設(shè)法時,務(wù)必考慮全面,不要忽略直線斜率為0或不存在等特殊情形.19、(1)(2)三角形不可能是等邊三角形,理由見解析【解析】(1)根據(jù)點坐標(biāo)和離心率可得橢圓方程;(2)假設(shè)為等邊三角形,設(shè),與橢圓方程聯(lián)立,由韋達(dá)定理得的中點的坐標(biāo),,利用得出矛盾.小問1詳解】由點在橢圓上,得,即,又,即,解得,所以橢圓的方程為.【小問2詳解】假設(shè)為等邊三角形,設(shè),,聯(lián)立,消去得,由韋達(dá)定理得,由得,故,所以的中點為,所以,故,與等邊三角形中矛盾,所以假設(shè)不成立,故三角形不可能是等邊三角形.20、(1)極大值為,無極小值(2)【解析】(1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的正負(fù)判斷極值點,代入原函數(shù)計算即可;(2)將變形,即對恒成立,然后構(gòu)造函數(shù),利用求導(dǎo)判定函數(shù)的單調(diào)性,進(jìn)而確定實數(shù)a的取值范圍..【小問1詳解】對函數(shù)求導(dǎo)可得:,可知當(dāng)時,時,,即可知在上單調(diào)遞增,在上單調(diào)遞減由上可知,的極大值為,無極小值【小問2詳解】由對恒成立,當(dāng)時,恒成立;當(dāng)時,對恒成立,可變形為:對恒成立,令,則;求導(dǎo)可得:由(1)知即恒成立,當(dāng)時,,則在上單調(diào)遞增;又,因,故,,所以在上恒成立,當(dāng)時,令,得,當(dāng)時,在上單調(diào)遞增,當(dāng)時,在上單調(diào)遞減,從而可知的最大值為,即,因此,對都有恒成立,所以,實數(shù)a的取值范圍是.21、(1)證明見解析;(2).【解析】(1)令,求導(dǎo)得到函數(shù)的增區(qū)間為,減區(qū)間為,故,得到證明.(2),討論和兩種情況,計算函數(shù)的單調(diào)區(qū)間得到,解得答案.【詳解】(1)令,有,令可得,故函數(shù)的增區(qū)間為,減區(qū)間為,,故有.(2)由①當(dāng)時,,此時函數(shù)的減區(qū)間為,沒有增區(qū)間;②當(dāng)時,令可得,此時函數(shù)的增區(qū)間為,減區(qū)間為.若函數(shù)有兩個零點,必須且,可得,此時,又由,當(dāng)時,由(1)有,取時,顯
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《高等數(shù)學(xué)基礎(chǔ)知識》課件
- 湖南省名校聯(lián)考聯(lián)合體2024-2025學(xué)年高三上學(xué)期第四次聯(lián)考?xì)v史試題(含答案)
- 巨大胎兒的健康宣教
- 亞急性皮膚紅斑狼瘡的健康宣教
- 藥物性鼻炎的健康宣教
- 家族性進(jìn)行性色素沉著的臨床護(hù)理
- 家族性黏液血管纖維瘤的臨床護(hù)理
- 1.4.2用空間向量研究夾角問題第2課時(教學(xué)課件)高二數(shù)學(xué)選擇性必修第一冊(人教A版2019)
- JJF(陜) 056-2021 等電位測試儀校準(zhǔn)規(guī)范
- 金融行業(yè)品牌推廣策略計劃
- 民辦學(xué)校教職工入職背景審查制度
- 2024年新人教版四年級數(shù)學(xué)上冊《教材練習(xí)21練習(xí)二十一(附答案)》教學(xué)課件
- 大國三農(nóng)II-農(nóng)業(yè)科技版智慧樹知到期末考試答案章節(jié)答案2024年中國農(nóng)業(yè)大學(xué)
- 2024年湛江市農(nóng)業(yè)發(fā)展集團(tuán)有限公司招聘筆試沖刺題(帶答案解析)
- (正式版)HGT 6313-2024 化工園區(qū)智慧化評價導(dǎo)則
- 商業(yè)倫理與社會責(zé)任智慧樹知到期末考試答案2024年
- MOOC 創(chuàng)新思維與創(chuàng)業(yè)實驗-東南大學(xué) 中國大學(xué)慕課答案
- JBT 1472-2023 泵用機(jī)械密封 (正式版)
- 二級公立醫(yī)院績效考核三級手術(shù)目錄(2020版)
- 6人小品《沒有學(xué)習(xí)的人不傷心》臺詞完整版
- GB/T 16865-1997變形鋁、鎂及其合金加工制品拉伸試驗用試樣
評論
0/150
提交評論