湖北省武漢市常青第一中學2025屆高三數學第一學期期末質量檢測試題含解析_第1頁
湖北省武漢市常青第一中學2025屆高三數學第一學期期末質量檢測試題含解析_第2頁
湖北省武漢市常青第一中學2025屆高三數學第一學期期末質量檢測試題含解析_第3頁
湖北省武漢市常青第一中學2025屆高三數學第一學期期末質量檢測試題含解析_第4頁
湖北省武漢市常青第一中學2025屆高三數學第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省武漢市常青第一中學2025屆高三數學第一學期期末質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.2.中國古代數學著作《孫子算經》中有這樣一道算術題:“今有物不知其數,三三數之余二,五五數之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數除以正整數后的余數為,則記為,例如.現將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.3.設為等差數列的前項和,若,,則的最小值為()A. B. C. D.4.已知函數,下列結論不正確的是()A.的圖像關于點中心對稱 B.既是奇函數,又是周期函數C.的圖像關于直線對稱 D.的最大值是5.已知函數在上單調遞增,則的取值范圍()A. B. C. D.6.函數的大致圖象是A. B. C. D.7.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.9.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.10.已知函數,若關于的不等式恰有1個整數解,則實數的最大值為()A.2 B.3 C.5 D.811.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要12.《普通高中數學課程標準(2017版)》提出了數學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數學核心素養(yǎng)水平,現以六大素養(yǎng)為指標對二人進行了測驗,根據測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數據分析素養(yǎng)高于乙B.甲的數學建模素養(yǎng)優(yōu)于數學抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知是的中點,且,點滿足,則的取值范圍是_______.14.已知數列滿足,且恒成立,則的值為____________.15.若函數,則使得不等式成立的的取值范圍為_________.16.若,則________,________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區(qū)等等.(1)為了解“五·一”勞動節(jié)當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現從年齡在內的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內的人數為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數據資料顯示每年勞動節(jié)當日客流量(單位:萬人)都大于1.將每年勞動節(jié)當日客流量數據分成3個區(qū)間整理得表:勞動節(jié)當日客流量頻數(年)244以這10年的數據資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關聯(lián)關系如下表:勞動節(jié)當日客流量型游船最多使用量123若某艘型游船在勞動節(jié)當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節(jié)當日被投入卻不被使用,則游船中心當日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節(jié)當日獲得的總利潤,的數學期望越大游船中心在勞動節(jié)當日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當日應投入多少艘型游船才能使其當日獲得的總利潤最大?18.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數、外三科各占150分,選考科目成績采用“賦分制”,即原始分數不直接用,而是按照學生分數在本科目考試的排名來劃分等級并以此打分得到最后得分.根據高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數區(qū)間,得到考生的等級成績.舉例說明.某同學化學學科原始分為65分,該學科C+等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬C+等級.而C+等級的轉換分區(qū)間為61~70,那么該同學化學學科的轉換分為:設該同學化學科的轉換等級分為x,69-6565-58=70-x四舍五入后該同學化學學科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數;(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數,求X的分布列和數學期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68219.(12分)在直角坐標系xOy中,直線的參數方程為(t為參數,).以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,曲線C的極坐標方程為.(l)求直線的普通方程和曲線C的直角坐標方程:(2)若直線與曲線C相交于A,B兩點,且.求直線的方程.20.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.21.(12分)設函數.(1)時,求的單調區(qū)間;(2)當時,設的最小值為,若恒成立,求實數t的取值范圍.22.(10分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大?。唬?)求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.2、C【解析】從21開始,輸出的數是除以3余2,除以5余3,滿足條件的是23,故選C.3、C【解析】

根據已知條件求得等差數列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數列通項公式和前項和公式的基本量計算,考查等差數列前項和最值的求法,屬于基礎題.4、D【解析】

通過三角函數的對稱性以及周期性,函數的最值判斷選項的正誤即可得到結果.【詳解】解:,正確;,為奇函數,周期函數,正確;,正確;D:,令,則,,,,則時,或時,即在上單調遞增,在和上單調遞減;且,,,故D錯誤.故選:.【點睛】本題考查三角函數周期性和對稱性的判斷,利用導數判斷函數最值,屬于中檔題.5、B【解析】

由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.6、A【解析】

利用函數的對稱性及函數值的符號即可作出判斷.【詳解】由題意可知函數為奇函數,可排除B選項;當時,,可排除D選項;當時,,當時,,即,可排除C選項,故選:A【點睛】本題考查了函數圖象的判斷,函數對稱性的應用,屬于中檔題.7、A【解析】

由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.8、A【解析】

根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.9、C【解析】

利用建系,假設長度,表示向量與,利用向量的夾角公式,可得結果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設,所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎題.10、D【解析】

畫出函數的圖象,利用一元二次不等式解法可得解集,再利用數形結合即可得出.【詳解】解:函數,如圖所示當時,,由于關于的不等式恰有1個整數解因此其整數解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數解當時,,至少有兩個整數解綜上,實數的最大值為故選:D【點睛】本題主要考查了根據函數零點的個數求參數范圍,屬于較難題.11、B【解析】

由線面關系可知,不能確定與平面的關系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.12、D【解析】

根據雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數據分析分,乙的數據分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數據處理,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據函數知識求出范圍.【詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據余弦定理可得,解得,由,解得.綜上,故答案為:.【點睛】本題主要考查學中點公式的向量形式和數量積的定義的應用,以及余弦定理的應用,涉及到函數思想和分類討論思想的應用,解題關鍵是建立函數關系式,屬于中檔題.14、【解析】

易得,所以是等差數列,再利用等差數列的通項公式計算即可.【詳解】由已知,,因,所以,所以數列是以為首項,3為公差的等差數列,故,所以.故答案為:【點睛】本題考查由遞推數列求數列中的某項,考查學生等價轉化的能力,是一道容易題.15、【解析】

分,兩種情況代入討論即可求解.【詳解】,當時,,符合;當時,,不滿足.故答案為:【點睛】本題主要考查了分段函數的計算,考查了分類討論的思想.16、【解析】

根據誘導公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導公式和二倍角公式,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)投入3艘型游船使其當日獲得的總利潤最大【解析】

(1)首先計算出在,內抽取的人數,然后利用超幾何分布概率計算公式,計算出.(2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當日游艇投放量.【詳解】(1)年齡在內的游客人數為150,年齡在內的游客人數為100;若采用分層抽樣的方法抽取10人,則年齡在內的人數為6人,年齡在內的人數為4人.可得.(2)①當投入1艘型游船時,因客流量總大于1,則(萬元).②當投入2艘型游船時,若,則,此時;若,則,此時;此時的分布列如下表:2.56此時(萬元).③當投入3艘型游船時,若,則,此時;若,則,此時;若,則,此時;此時的分布列如下表:25.59此時(萬元).由于,則該游船中心在2020年勞動節(jié)當日應投入3艘型游船使其當日獲得的總利潤最大.【點睛】本小題主要考查分層抽樣,考查超幾何分布概率計算公式,考查隨機變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數學思想方法,屬于中檔題.18、(1)(i)83.;(ii)272.(2)見解析.【解析】

(1)根據原始分數分布區(qū)間及轉換分區(qū)間,結合所給示例,即可求得小明轉換后的物理成績;根據正態(tài)分布滿足N60,122(2)根據各等級人數所占比例可知在區(qū)間61,80內的概率為25,由二項分布即可求得X【詳解】(1)(i)設小明轉換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉換后的物理成績?yōu)?3分;(ii)因為物理考試原始分基本服從正態(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數為2000×0.136=272(人);(2)由題意得,隨機抽取1人,其等級成績在區(qū)間61,80內的概率為25隨機抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數學期望EX【點睛】本題考查了統(tǒng)計的綜合應用,正態(tài)分布下求某區(qū)間概率的方法,分布列及數學期望的求法,文字多,數據多,需要細心的分析和理解,屬于中檔題。19、(1)見解析(2)【解析】

(1)將消去參數t可得直線的普通方程,利用x=ρcosθ,可將極坐標方程轉為直角坐標方程.(2)利用直線被圓截得的弦長公式計算可得答案.【詳解】(1)由消去參數t得(),由得曲線C的直角坐標方程為:(2)由得,圓心為(1,0),半徑為2,圓心到直線的距離為,∴,即,整理得,∵,∴,,,所以直線l的方程為:.【點睛】本題考查參數方程,極坐標方程與直角坐標方程之間的互化,考查直線被圓截得的弦長公式的應用,考查分析能力與計算能力,屬于基礎題.20、(1);(2).【解析】

(1)在三角形中,利用余弦定理列方程,解方程求得的長,進而由三角形的面積公式求得三角形的面積.(2)利用誘導公式求得,進而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論