版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年吉林省北大附屬長(zhǎng)春實(shí)驗(yàn)學(xué)校高三年級(jí)第二學(xué)期調(diào)研考試數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量與的夾角為,,,則()A. B.0 C.0或 D.2.已知為定義在上的偶函數(shù),當(dāng)時(shí),,則()A. B. C. D.3.在聲學(xué)中,聲強(qiáng)級(jí)(單位:)由公式給出,其中為聲強(qiáng)(單位:).,,那么()A. B. C. D.4.在直三棱柱中,己知,,,則異面直線(xiàn)與所成的角為()A. B. C. D.5.在棱長(zhǎng)為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點(diǎn),若三棱錐P?ABC的四個(gè)頂點(diǎn)都在球O的球面上,則球O的表面積為()A.12 B. C. D.106.已知函數(shù),關(guān)于x的方程f(x)=a存在四個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)7.已知函數(shù),其中,,其圖象關(guān)于直線(xiàn)對(duì)稱(chēng),對(duì)滿(mǎn)足的,,有,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,則函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.8.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.159.已知與分別為函數(shù)與函數(shù)的圖象上一點(diǎn),則線(xiàn)段的最小值為()A. B. C. D.610.我國(guó)宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書(shū)九章》(1247)一書(shū)中提出“三斜求積術(shù)”,即:以少?gòu)V求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開(kāi)平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長(zhǎng),,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或11.已知函數(shù),,若對(duì)任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.12.已知等比數(shù)列的前項(xiàng)和為,且滿(mǎn)足,則的值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.中,角的對(duì)邊分別為,且成等差數(shù)列,若,,則的面積為_(kāi)_________.14.在平面直角坐標(biāo)系中,圓.已知過(guò)原點(diǎn)且相互垂直的兩條直線(xiàn)和,其中與圓相交于,兩點(diǎn),與圓相切于點(diǎn).若,則直線(xiàn)的斜率為_(kāi)____________.15.在四棱錐中,是邊長(zhǎng)為的正三角形,為矩形,,.若四棱錐的頂點(diǎn)均在球的球面上,則球的表面積為_(kāi)____.16.已知四棱錐的底面ABCD是邊長(zhǎng)為2的正方形,且.若四棱錐P-ABCD的五個(gè)頂點(diǎn)在以4為半徑的同一球面上,當(dāng)PA最長(zhǎng)時(shí),則______________;四棱錐P-ABCD的體積為_(kāi)_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),,使得對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個(gè)實(shí)根,且,求證:.18.(12分)已知是各項(xiàng)都為正數(shù)的數(shù)列,其前項(xiàng)和為,且為與的等差中項(xiàng).(1)求證:數(shù)列為等差數(shù)列;(2)設(shè),求的前100項(xiàng)和.19.(12分)已知橢圓的短軸的兩個(gè)端點(diǎn)分別為、,焦距為.(1)求橢圓的方程;(2)已知直線(xiàn)與橢圓有兩個(gè)不同的交點(diǎn)、,設(shè)為直線(xiàn)上一點(diǎn),且直線(xiàn)、的斜率的積為.證明:點(diǎn)在軸上.20.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,若同時(shí)滿(mǎn)足下列四個(gè)條件中的三個(gè):①;②;③;④.(1)滿(mǎn)足有解三角形的序號(hào)組合有哪些?(2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)21.(12分)設(shè),函數(shù).(1)當(dāng)時(shí),求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個(gè)極值點(diǎn)時(shí),總有,求實(shí)數(shù)的值.22.(10分)已知,,,,證明:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達(dá)式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B【點(diǎn)睛】本題主要考查向量數(shù)量積的運(yùn)算和向量的模長(zhǎng)平方等于向量的平方,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.2.D【解析】
判斷,利用函數(shù)的奇偶性代入計(jì)算得到答案.【詳解】∵,∴.故選:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.3.D【解析】
由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴,故選:D.【點(diǎn)睛】本小題主要考查對(duì)數(shù)運(yùn)算,屬于基礎(chǔ)題.4.C【解析】
由條件可看出,則為異面直線(xiàn)與所成的角,可證得三角形中,,解得從而得出異面直線(xiàn)與所成的角.【詳解】連接,,如圖:又,則為異面直線(xiàn)與所成的角.因?yàn)榍胰庵鶠橹比庵?,∴∴面,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線(xiàn)面垂直的性質(zhì),考查了異面直線(xiàn)所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.5.C【解析】
取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點(diǎn)Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,的外接圓直徑為,球O的半徑R滿(mǎn)足,所以球O的表面積S=4πR2=,故選:C.【點(diǎn)睛】此題考查三棱錐的外接球半徑與棱長(zhǎng)的關(guān)系,及球的表面積公式,解題時(shí)要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.6.D【解析】
原問(wèn)題轉(zhuǎn)化為有四個(gè)不同的實(shí)根,換元處理令t,對(duì)g(t)進(jìn)行零點(diǎn)個(gè)數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時(shí),g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個(gè)不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實(shí)數(shù)a的取值范圍是(2,2).故選:D.【點(diǎn)睛】此題考查方程的根與函數(shù)零點(diǎn)問(wèn)題,關(guān)鍵在于等價(jià)轉(zhuǎn)化,將問(wèn)題轉(zhuǎn)化為通過(guò)導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問(wèn)題.7.B【解析】
根據(jù)已知得到函數(shù)兩個(gè)對(duì)稱(chēng)軸的距離也即是半周期,由此求得的值,結(jié)合其對(duì)稱(chēng)軸,求得的值,進(jìn)而求得解析式.根據(jù)圖像變換的知識(shí)求得的解析式,再利用三角函數(shù)求單調(diào)區(qū)間的方法,求得的單調(diào)遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關(guān)于直線(xiàn)對(duì)稱(chēng),對(duì)滿(mǎn)足的,,有,∴.再根據(jù)其圖像關(guān)于直線(xiàn)對(duì)稱(chēng),可得,.∴,∴.將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖像.令,求得,則函數(shù)的單調(diào)遞減區(qū)間是,,故選B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖像與性質(zhì)求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調(diào)區(qū)間的求法,屬于中檔題.8.B【解析】,∴,選B.9.C【解析】
利用導(dǎo)數(shù)法和兩直線(xiàn)平行性質(zhì),將線(xiàn)段的最小值轉(zhuǎn)化成切點(diǎn)到直線(xiàn)距離.【詳解】已知與分別為函數(shù)與函數(shù)的圖象上一點(diǎn),可知拋物線(xiàn)存在某條切線(xiàn)與直線(xiàn)平行,則,設(shè)拋物線(xiàn)的切點(diǎn)為,則由可得,,所以切點(diǎn)為,則切點(diǎn)到直線(xiàn)的距離為線(xiàn)段的最小值,則.故選:C.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,以及點(diǎn)到直線(xiàn)的距離公式的應(yīng)用,考查轉(zhuǎn)化思想和計(jì)算能力.10.C【解析】
將,,,代入,解得,再分類(lèi)討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時(shí),由余弦弦定理得:,.當(dāng)時(shí),由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對(duì)數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.11.C【解析】
對(duì)任意的總有恒成立,因?yàn)?,?duì)恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對(duì)任意的總有恒成立,對(duì)恒成立,令,可得令,得當(dāng),當(dāng),,故令,得當(dāng)時(shí),當(dāng),當(dāng)時(shí),故選:C.【點(diǎn)睛】本題主要考查了根據(jù)不等式恒成立求最值問(wèn)題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計(jì)算能力,屬于難題.12.C【解析】
利用先求出,然后計(jì)算出結(jié)果.【詳解】根據(jù)題意,當(dāng)時(shí),,,故當(dāng)時(shí),,數(shù)列是等比數(shù)列,則,故,解得,故選.【點(diǎn)睛】本題主要考查了等比數(shù)列前項(xiàng)和的表達(dá)形式,只要求出數(shù)列中的項(xiàng)即可得到結(jié)果,較為基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13..【解析】
由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.14.【解析】
設(shè):,:,利用點(diǎn)到直線(xiàn)的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線(xiàn):,則:,圓心到直線(xiàn)的距離為,,.圓心到直線(xiàn)的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點(diǎn)睛】本題主要考查點(diǎn)到直線(xiàn)的距離公式的運(yùn)用,并結(jié)合圓的方程,垂徑定理的基本知識(shí),屬于中檔題.15.【解析】
做中點(diǎn),的中點(diǎn),連接,由已知條件可求出,運(yùn)用余弦定理可求,從而在平面中建立坐標(biāo)系,則以及的外接圓圓心為和長(zhǎng)方形的外接圓圓心為在該平面坐標(biāo)系的坐標(biāo)可求,通過(guò)球心滿(mǎn)足,即可求出的坐標(biāo),從而可求球的半徑,進(jìn)而能求出球的表面積.【詳解】解:如圖做中點(diǎn),的中點(diǎn),連接,由題意知,則設(shè)的外接圓圓心為,則在直線(xiàn)上且設(shè)長(zhǎng)方形的外接圓圓心為,則在上且.設(shè)外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標(biāo)原點(diǎn),以所在直線(xiàn)為軸,以過(guò)點(diǎn)垂直于軸的直線(xiàn)為軸,如圖建立坐標(biāo)系,由題意知,在平面中且設(shè),則,因?yàn)?,所以解?則所以球的表面積為.故答案為:.【點(diǎn)睛】本題考查了幾何體外接球的問(wèn)題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過(guò)將幾何體補(bǔ)充到長(zhǎng)方體中,將幾何體的外接球等同于長(zhǎng)方體的外接球,求出體對(duì)角線(xiàn)即為直徑,但這種方法適用性較差;二是通過(guò)球的球心與各面外接圓圓心的連線(xiàn)與該平面垂直,設(shè)半徑列方程求解;三是通過(guò)空間、平面坐標(biāo)系進(jìn)行求解.16.90°【解析】
易得平面PAD,P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),顯然,PA是圓的直徑時(shí),PA最長(zhǎng);將四棱錐補(bǔ)形為長(zhǎng)方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點(diǎn)在與BA垂直的圓面內(nèi)運(yùn)動(dòng),易知,當(dāng)P、、A三點(diǎn)共線(xiàn)時(shí),PA達(dá)到最長(zhǎng),此時(shí),PA是圓的直徑,則;又,所以平面ABCD,此時(shí)可將四棱錐補(bǔ)形為長(zhǎng)方體,其體對(duì)角線(xiàn)為,底面邊長(zhǎng)為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點(diǎn)睛】本題四棱錐外接球有關(guān)的問(wèn)題,考查學(xué)生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)證明見(jiàn)解析.【解析】
(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類(lèi)討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個(gè)實(shí)根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【詳解】(1)根據(jù)題意,對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.則在上單調(diào)遞減,因?yàn)?,?dāng)時(shí),在內(nèi)單調(diào)遞減.,當(dāng)時(shí),由,有,此時(shí),當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,綜上,,所以.(2)由為方程的兩個(gè)實(shí)根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計(jì)算能力.18.(1)證明見(jiàn)解析;(2).【解析】
(1)利用已知條件化簡(jiǎn)出,當(dāng)時(shí),,當(dāng)時(shí),再利用進(jìn)行化簡(jiǎn),得出,即可證明出為等差數(shù)列;(2)根據(jù)(1)中,求出數(shù)列的通項(xiàng)公式,再化簡(jiǎn)出,可直接求出的前100項(xiàng)和.【詳解】解:(1)由題意知,即,①當(dāng)時(shí),由①式可得;又時(shí),有,代入①式得,整理得,∴是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可得,∵是各項(xiàng)都為正數(shù),∴,∴,又,∴,則,,即:.∴的前100項(xiàng)和.【點(diǎn)睛】本題考查數(shù)列遞推關(guān)系的應(yīng)用,通項(xiàng)公式的求法以及裂項(xiàng)相消法求和,考查分析解題能力和計(jì)算能力.19.(1);(2)見(jiàn)解析.【解析】
(1)由已知條件得出、的值,進(jìn)而可得出的值,由此可求得橢圓的方程;(2)設(shè)點(diǎn),可得,且,,求出直線(xiàn)的斜率,進(jìn)而可求得直線(xiàn)與的方程,將直線(xiàn)直線(xiàn)與的方程聯(lián)立,求出點(diǎn)的坐標(biāo),即可證得結(jié)論.【詳解】(1)由題設(shè),得,所以,即.故橢圓的方程為;(2)設(shè),則,,.所以直線(xiàn)的斜率為,因?yàn)橹本€(xiàn)、的斜率的積為,所以直線(xiàn)的斜率為.直線(xiàn)的方程為,直線(xiàn)的方程為.聯(lián)立,解得點(diǎn)的縱坐標(biāo)為.因?yàn)辄c(diǎn)在橢圓上,所以,則,所以點(diǎn)在軸上.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了點(diǎn)在定直線(xiàn)的證明,考查計(jì)算能力與推理能力,屬于中等題.20.(1)①,③,④或②,③,④;(2).【解析】
(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時(shí)成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對(duì)應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因?yàn)椋?,所以,所以,矛?所以不能同時(shí)滿(mǎn)足①,②.故滿(mǎn)足①,③,④或②,③,④;(2)若滿(mǎn)足①,③,④,因?yàn)?,所以,?解得.所以的面積.若滿(mǎn)足②,③,④由正弦定理,即,解得,所以,所以的面積.【點(diǎn)睛】本題考查三角形能否成立的判斷,同時(shí)也考查
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版咖啡廳裝飾裝修合同范本3篇
- 二零二五年瑜伽館教練考核與晉升合同3篇
- 2024年高端肉雞養(yǎng)殖場(chǎng)飼養(yǎng)員技能提升與雇傭合同3篇
- 二零二五年度旅游項(xiàng)目開(kāi)發(fā)合作合同3篇
- 二零二五版歷史建筑保護(hù)修繕工程合作協(xié)議3篇
- 2024版企事業(yè)單位法人工勞動(dòng)協(xié)議模板版B版
- 2024版知識(shí)產(chǎn)權(quán)許可合同認(rèn)定條件與標(biāo)的詳解
- 2024版協(xié)議無(wú)效化協(xié)議范本版B版
- 2024版大型商鋪?zhàn)赓U合同參考范文
- 二零二五版建筑砌筑工程節(jié)能改造服務(wù)合同2篇
- 制造樣品生產(chǎn)作業(yè)指導(dǎo)書(shū)
- 服務(wù)經(jīng)營(yíng)培訓(xùn)課件ppt 老客戶(hù)經(jīng)營(yíng)綜合版
- MT/T 199-1996煤礦用液壓鉆車(chē)通用技術(shù)條件
- GB/T 6144-1985合成切削液
- GB/T 10357.1-2013家具力學(xué)性能試驗(yàn)第1部分:桌類(lèi)強(qiáng)度和耐久性
- 第三方在線(xiàn)糾紛解決機(jī)制(ODR)述評(píng),國(guó)際商法論文
- 公寓de全人物攻略本為個(gè)人愛(ài)好而制成如需轉(zhuǎn)載注明信息
- 第5章-群體-團(tuán)隊(duì)溝通-管理溝通
- 腎臟病飲食依從行為量表(RABQ)附有答案
- 深基坑-安全教育課件
- 園林施工管理大型園林集團(tuán)南部區(qū)域養(yǎng)護(hù)標(biāo)準(zhǔn)圖例
評(píng)論
0/150
提交評(píng)論