寶雞市重點中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第1頁
寶雞市重點中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第2頁
寶雞市重點中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第3頁
寶雞市重點中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第4頁
寶雞市重點中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

寶雞市重點中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,正方形ABCD的邊長為2,動點E從A開始沿A→B→C的方向以2個單位長/秒的速度運動到C點停止,同時動點F從點C開始沿CD邊以1個單位長/秒的速度運動到D點停止,則的面積y與運動時間x(秒)之間的函數(shù)圖像大致形狀是()A. B.C. D.2.以,為基底表示為A. B.C. D.3.已知函數(shù)在內(nèi)是減函數(shù),則的取值范圍是A. B.C. D.4.下列四個函數(shù)中,以π為最小正周期,且在區(qū)間上單調(diào)遞減的是()A. B.C. D.5.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的兩根,則α,β,m,n的大小關(guān)系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n6.函數(shù)部分圖像如圖所示,則的值為()A. B.C. D.7.如圖,在平面四邊形ABCD,,,,.若點E為邊上的動點,則的取值范圍為()A. B.C. D.8.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.9.下列命題中是真命題的是()A.“”是“”的充分條件B.“”是“”的必要條件C.“”是“”的充要條件D.“”是“”的充要條件10.設(shè),且,則的最小值是()A. B.8C. D.16二、填空題:本大題共6小題,每小題5分,共30分。11.已知,函數(shù),若函數(shù)有兩個零點,則實數(shù)k的取值范圍是________12.據(jù)資料統(tǒng)計,通過環(huán)境整治.某湖泊污染區(qū)域的面積與時間t(年)之間存在近似的指數(shù)函數(shù)關(guān)系,若近兩年污染區(qū)域的面積由降至.則使污染區(qū)域的面積繼續(xù)降至還需要_______年13.函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍_______.14.不等式的解集是______15.已知,,,,則______.16.給出以下四個結(jié)論:①若函數(shù)的定義域為,則函數(shù)的定義域是;②函數(shù)(其中,且)圖象過定點;③當(dāng)時,冪函數(shù)的圖象是一條直線;④若,則的取值范圍是;⑤若函數(shù)在區(qū)間上單調(diào)遞減,則的取值范圍是.其中所有正確結(jié)論的序號是___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某校食堂需定期購買大米已知該食堂每天需用大米噸,每噸大米的價格為6000元,大米的保管費用單位:元與購買天數(shù)單位:天的關(guān)系為,每次購買大米需支付其他固定費用900元該食堂多少天購買一次大米,才能使平均每天所支付的總費用最少?若提供糧食的公司規(guī)定:當(dāng)一次性購買大米不少于21噸時,其價格可享受8折優(yōu)惠即原價的,該食堂是否應(yīng)考慮接受此優(yōu)惠條件?請說明理由18.如圖,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,F(xiàn)C=4,AE=5,求此幾何體的體積19.某汽車配件廠擬引進(jìn)智能機器人來代替人工進(jìn)行某個操作,以提高運作效率和降低人工成本,已知購買x臺機器人的總成本為(萬元)(1)若使每臺機器人的平均成本最低,問應(yīng)買多少臺?(2)現(xiàn)按(1)中求得的數(shù)量購買機器人,需要安排m人協(xié)助機器人,經(jīng)實驗知,每臺機器人的日平均工作量(單位:次),已知傳統(tǒng)人工每人每日的平均工作量為400次,問引進(jìn)機器人后,日平均工作量達(dá)最大值時,用人數(shù)量比引進(jìn)機器人前工作量達(dá)此最大值時的用人數(shù)量減少百分之幾?20.設(shè)為奇函數(shù),為常數(shù).(1)求的值(2)若對于上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.21.已知函數(shù),.(1)運用五點作圖法在所給坐標(biāo)系內(nèi)作出在內(nèi)的圖像(畫在答題卡上);(2)求函數(shù)的對稱軸,對稱中心和單調(diào)遞增區(qū)間.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】先求出時,的面積y的解析式,再根據(jù)二次函數(shù)的圖象分析判斷得解.詳解】由題得時,,所以的面積y,它圖象是拋物線的一部分,且含有對稱軸.故選:A【點睛】本題主要考查函數(shù)的解析式的求法,考查二次函數(shù)的圖象和性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.2、B【解析】設(shè),利用向量相等可構(gòu)造方程組,解方程組求得結(jié)果.【詳解】設(shè)則本題正確選項:【點睛】本題考查平面向量基本定理的應(yīng)用,關(guān)鍵是能夠通過向量相等構(gòu)造出方程組,屬于基礎(chǔ)題.3、B【解析】由題設(shè)有為減函數(shù),且,恒成立,所以,解得,選B.4、B【解析】先判斷各函數(shù)最小正周期,再確定各函數(shù)在區(qū)間上單調(diào)性,即可選擇判斷【詳解】對于A,最小正周期為2π,在區(qū)間上單調(diào)遞減,不合題意;對于B,最小正周期為π,在區(qū)間上單調(diào)遞減,符合題意;對于C,最小正周期為2π,在區(qū)間上單調(diào)遞減,不合題意;對于D,最小正周期為π,在區(qū)間上單調(diào)遞增,不合題意;故選:B.5、C【解析】根據(jù)二次函數(shù)的性質(zhì)判斷【詳解】記,由題意,,的圖象是開口向上的拋物線,所以上遞減,在上遞增,又,,所以,,即(也可由的圖象向下平移2022個單位得的圖象得出判斷)故選:C6、C【解析】根據(jù)的最值得出,根據(jù)周期得出,利用特殊點計算,從而得出的解析式,再計算.【詳解】由函數(shù)的最小值可知:,函數(shù)的周期:,則,當(dāng)時,,據(jù)此可得:,令可得:,則函數(shù)的解析式為:,.故選:C.【點睛】本題考查了三角函數(shù)的圖象與性質(zhì),屬于中檔題.7、A【解析】由已知條件可得,設(shè),則,由,展開后,利用二次函數(shù)性質(zhì)求解即可.【詳解】∵,因為,,,所以,連接,因為,所以≌,所以,所以,則,設(shè),則,∴,,,,所以,因為,所以.故選:A8、C【解析】由解出范圍即可.【詳解】由,可得,所以函數(shù)的單調(diào)遞增區(qū)間為,故選C.9、B【解析】利用充分條件、必要條件的定義逐一判斷即可.【詳解】因為是集合A的子集,故“”是“”的必要條件,故選項A為假命題;當(dāng)時,則,所以“”是“”的必要條件,故選項B為真命題;因為是上的減函數(shù),所以當(dāng)時,,故選項C為假命題;取,,但,故選項D為假命題.故選:B.10、B【解析】轉(zhuǎn)化原式為,結(jié)合均值不等式即得解【詳解】由題意,故則當(dāng)且僅當(dāng),即時等號成立故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意函數(shù)有兩個零點可得,得,令與,作出函數(shù)與的圖象如圖所示:由圖可知,函數(shù)有且只有兩個零點,則實數(shù)的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的應(yīng)用,函數(shù)零點的判斷等知識,解題時要靈活應(yīng)用數(shù)形結(jié)合思想12、2【解析】根據(jù)已知條件,利用近兩年污染區(qū)域的面積由降至,求出指數(shù)函數(shù)關(guān)系的底數(shù),再代入求得污染區(qū)域?qū)⒅吝€需要的年數(shù).【詳解】設(shè)相隔為t年的兩個年份湖泊污染區(qū)域的面積為和,則可設(shè)由題設(shè)知,,,,即,解得,假設(shè)需要x年能將至,即,,,解得所以使污染區(qū)域的面積繼續(xù)降至還需要2年.故答案為:213、【解析】由對數(shù)真數(shù)大于零可知在上恒成立,利用分離變量的方法可求得,此時結(jié)合復(fù)合函數(shù)單調(diào)性的判斷可知在上單調(diào)遞增,由此可確定的取值范圍.【詳解】由題意知:在上恒成立,在上恒成立,在上單調(diào)遞減,,;當(dāng)時,單調(diào)遞增,又此時在上單調(diào)遞增,在上單調(diào)遞增,滿足題意;實數(shù)的取值范圍為.故答案為:.14、【解析】先利用指數(shù)函數(shù)的單調(diào)性得,再解一元二次不等式即可【詳解】故答案為【點睛】本題考查了指數(shù)不等式和一元二次不等式的解法,屬中檔題15、【解析】利用兩角和的正弦公式即可得結(jié)果.【詳解】因為,,所以,由,,可得,,所以.故答案為:.16、①④⑤【解析】根據(jù)抽象函數(shù)的定義域,對數(shù)函數(shù)的性質(zhì)、冪函數(shù)的定義、對數(shù)不等式的求解方法,以及復(fù)合函數(shù)單調(diào)性的討論,對每一項進(jìn)行逐一分析,即可判斷和選擇.【詳解】對①:因為,,所以的定義域為,令,故,即的定義域為,故①正確;對②:當(dāng),,圖象恒過定點,故②錯誤;對③:若,則的圖象是兩條射線,故③錯誤;對④:原不等式等價于,故(無解)或,解得,故④正確;對⑤:實數(shù)應(yīng)滿足,解得,故⑤正確;綜上所述:正確結(jié)論的序號為①④⑤.【點睛】(1)抽象函數(shù)的定義域是一個難點,一般地,如果已知的定義域為,的定義域為,那么的定義域為;如果已知的定義域為,那么的定義域可取為.(2)形如的復(fù)合函數(shù),如果已知其在某區(qū)間上是單調(diào)函數(shù),我們不僅要考慮在給定區(qū)間上單調(diào)性,還要考慮到其在給定區(qū)間上總有成立.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)10天購買一次大米;(2)見解析.【解析】根據(jù)條件建立函數(shù)關(guān)系,結(jié)合基本不等式的應(yīng)用求最值即可;求出優(yōu)惠之后的函數(shù)表達(dá)式,結(jié)合函數(shù)的單調(diào)性求出函數(shù)的最值進(jìn)行判斷即可【詳解】解:設(shè)每天所支付的總費用為元,則,當(dāng)且僅當(dāng),即時取等號,則該食堂10天購買一次大米,才能使平均每天所支付的總費用最少若該食堂接受此優(yōu)惠條件,則至少每35天購買一次大米,設(shè)該食堂接受此優(yōu)惠條件后,每x,天購買一次大米,平均每天支付的總費用為,則,設(shè),,則在時,為增函數(shù),則當(dāng)時,有最小值,約為,此時,則食堂應(yīng)考慮接受此優(yōu)惠條件【點睛】本題主要考查函數(shù)的應(yīng)用問題,基本不等式的性質(zhì)以及函數(shù)的單調(diào)性,屬于中檔題.18、96【解析】,取CM=AN=BD,連接DM,MN,DN,用“分割法”把原幾何體分割成一個直三棱柱和一個四棱錐.所以V幾何體=V三棱柱+V四棱錐試題解析:如圖,取CM=AN=BD,連接DM,MN,DN,用“分割法”把原幾何體分割成一個直三棱柱和一個四棱錐.所以V幾何體=V三棱柱+V四棱錐.由題知三棱柱ABC-NDM的體積為V1=×8×6×3=72.四棱錐D-MNEF體積為V2=S梯形MNEF·DN=××(1+2)×6×8=24,則幾何體的體積為V=V1+V2=72+24=96.點睛:空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺體,則可直接利用公式進(jìn)行求解(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補形法等方法進(jìn)行求解(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解19、(1)8臺(2)【解析】(1)根據(jù)題意將問題轉(zhuǎn)化為對的求解,利用基本不等式即可;(2)先求出一臺機器人的最大日工作量,根據(jù)最大工作量再求出所需要的人數(shù),通過比較即可求解.【小問1詳解】由題意當(dāng)且僅當(dāng),即時,等號成立,所以應(yīng)購買8臺,可使每臺機器人的平均成本最低【小問2詳解】由,可得當(dāng)時,,所以時,每臺機器人的日平均工作量最大時,安排的人工數(shù)最小為20人,而此時人工操作需要的人工數(shù)為,所以可減少20、(1);(2).【解析】(1)根據(jù)函數(shù)為奇函數(shù)求參數(shù)值,注意驗證是否符合題設(shè).(2)將問題轉(zhuǎn)化為在上恒成立,根據(jù)解析式判斷的區(qū)間單調(diào)性,即可求的范圍.小問1詳解】由題設(shè),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論