2025屆山東省決勝新數(shù)學高一上期末檢測試題含解析_第1頁
2025屆山東省決勝新數(shù)學高一上期末檢測試題含解析_第2頁
2025屆山東省決勝新數(shù)學高一上期末檢測試題含解析_第3頁
2025屆山東省決勝新數(shù)學高一上期末檢測試題含解析_第4頁
2025屆山東省決勝新數(shù)學高一上期末檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2025屆山東省決勝新數(shù)學高一上期末檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=2x+x-2的零點所在區(qū)間是()A. B.C. D.2.滿足不等式成立的的取值集合為()A.B.C.D.3.已知,,則A. B.C. D.4.已知.則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.現(xiàn)在人們的環(huán)保意識越來越強,對綠色建筑材料的需求也越來越高.某甲醛檢測機構(gòu)對某種綠色建筑材料進行檢測,一定量的該種材料在密閉的檢測房間內(nèi)釋放的甲醛濃度(單位:)隨室溫(單位:℃)變化的函數(shù)關系式為(為常數(shù)).若室溫為20℃時該房間的甲醛濃度為,則室溫為30℃時該房間的甲醛濃度約為(?。ǎ〢. B.C. D.6.函數(shù)f(x)圖象大致為()A. B.C. D.7.已知集合M={x|1≤x<3},N={1,2},則M∩N=()A. B.C. D.8.三條直線l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,則a+b等于()A. B.6C.或6 D.0或49.集合,,將集合A,B分別用如圖中的兩個圓表示,則圓中陰影部分表示的集合中元素個數(shù)恰好為2的是()A. B.C. D.10.已知函數(shù),若函數(shù)恰有8個不同零點,則實數(shù)a的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.某種商品在第天的銷售價格(單位:元)為,第x天的銷售量(單位:件)為,則第14天該商品的銷售收入為________元,在這30天中,該商品日銷售收入的最大值為________元.12.圓的圓心到直線的距離為______.13.已知函數(shù),則無論取何值,圖象恒過的定點坐標______;若在上單調(diào)遞減,則實數(shù)的取值范圍是______14.函數(shù),若最大值為,最小值為,,則的取值范圍是______.15.在某高傳染性病毒流行期間,為了建立指標顯示疫情已受控制,以便向該地區(qū)居民顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計算,下列各個選項中,一定符合上述指標的是__________(填寫序號)①平均數(shù);②標準差;③平均數(shù)且極差小于或等于2;④平均數(shù)且標準差;⑤眾數(shù)等于1且極差小于或等于416.已知函數(shù),則函數(shù)的值域為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)是定義在1,1上的奇函數(shù),且.(1)求m,n的值;(2)判斷在1,1上的單調(diào)性,并用定義證明;(3)設,若對任意的,總存在,使得成立,求實數(shù)k的值.18.(1)計算:;(2)計算:19.蘆薈是一種經(jīng)濟價值很高的觀賞、食用植物,不僅可美化居室、凈化空氣,又可美容保健,因此深受人們歡迎,在國內(nèi)占有很大的市場.某人準備進軍蘆薈市場,栽培蘆薈,為了了解行情,進行市場調(diào)研,從4月1日起,蘆薈的種植成本Q(單位:元/10kg)與上市時間t(單位:天)的數(shù)據(jù)情況如表:t50110250Q150108150(1)根據(jù)表中數(shù)據(jù),從下列函數(shù)中選取一個最能反映蘆薈種植成本Q與上市時間t的變化關系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt,并說明理由;(2)利用你選擇的函數(shù),求蘆薈種植成本最低時的上市天數(shù)及最低種植成本.20.某漁業(yè)公司年初用98萬元購進一艘漁船,用于捕撈.已知該船使用中所需的各種費用e(單位:萬元)與使用時間n(,單位:年)之間的函數(shù)關系式為,該船每年捕撈的總收入為50萬元(1)該漁船捕撈幾年開始盈利(即總收入減去成本及所有使用費用為正值)?(2)若當年平均盈利額達到最大值時,漁船以30萬元賣出,則該船為漁業(yè)公司帶來的收益是多少萬元?21.已知函數(shù)圖象的一條對稱軸方程為,且其圖象上相鄰兩個零點的距離為.(1)求的解析式;(2)若對,不等式恒成立,求實數(shù)m的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)函數(shù)零點的存在性定理可得函數(shù)零點所在的區(qū)間【詳解】解:函數(shù),,(1),根據(jù)函數(shù)零點的存在性定理可得函數(shù)零點所在的區(qū)間為,故選C【點睛】本題主要考查函數(shù)的零點的存在性定理的應用,屬于基礎題2、A【解析】先求出一個周期內(nèi)不等式的解集,再結(jié)合余弦函數(shù)的周期性即可求解.【詳解】解:由得:當時,因為的周期為所以不等式的解集為故選:A.3、C【解析】由已知可得,故選C考點:集合的基本運算4、A【解析】求解出成立的充要條件,再與分析比對即可得解.【詳解】,,則或,由得,由得,顯然,,所以“”是“”的充分不必要條件.故選:A【點睛】結(jié)論點睛:充分不必要條件的判斷:p是q的充分不必要條件,則p對應集合是q對應集合的真子集.5、D【解析】由題可知,,求出,在由題中的函數(shù)關系式即可求解.【詳解】由題意可知,,解得,所以函數(shù)的解析式為,所以室溫為30℃時該房間的甲醛濃度約為.故選:D.6、A【解析】根據(jù)函數(shù)圖象的特征,利用奇偶性判斷,再利用特殊值取舍.【詳解】因為f(x)=f(x),所以f(x)是奇函數(shù),排除B,C又因為,排除D故選:A【點睛】本題主要考查了函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎題.7、B【解析】根據(jù)集合交集的定義可得所求結(jié)果【詳解】∵,∴故選B【點睛】本題考查集合的交集運算,解題的關鍵是弄清兩集合交集中元素的特征,進而得到所求集合,屬于基礎題8、C【解析】根據(jù)相互垂直的兩直線斜率之間的關系對b分類討論即可得出【詳解】l1,l2都和l3垂直,①若b=0,則a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,則1,1,聯(lián)立解得a=2,b=4,∴a+b=6綜上可得:a+b的值為﹣2或6故選C【點睛】本題考查了相互垂直的直線斜率之間的關系、分類討論方法,考查了推理能力與計算能力,屬于基礎題9、B【解析】首先求出集合,再結(jié)合韋恩圖及交集、并集、補集的定義計算可得;【詳解】解:∵,,∴,則,,選項A中陰影部分表示的集合為,即,故A錯誤;選項B中陰影部分表示的集合由屬于A但不屬于B的元素構(gòu)成,即,故B正確;選項C中陰影部分表示的集合由屬于B但不屬于A的元素構(gòu)成,即,有1個元素,故C錯誤;選項D中陰影部分表示的集合由屬于但不屬于的元素構(gòu)成,即,故D錯誤故選:B10、A【解析】利用十字相乘法進行因式分解,然后利用換元法,作出的圖象,利用數(shù)形結(jié)合判斷根的個數(shù)即可.【詳解】由,得,解得或,作出的圖象如圖,則若,則或,設,由得,此時或,當時,,有兩根,當時,,有一個根,則必須有,有個根,設,由得,若,由,得或,有一個根,有兩個根,此時有個根,不滿足題意;若,由,得,有一個根,不滿足條件.若,由,得,有一個根,不滿足條件;若,由,得或或,當,有一個根,當時,有個根,當時,有一個根,此時共有個根,滿足題意.所以實數(shù)a的取值范圍為.故選:A.【點睛】方法點睛:已知函數(shù)零點(方程根)的個數(shù),求參數(shù)取值范圍的三種常用的方法:(1)直接法,直接根據(jù)題設條件構(gòu)建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法,先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法,先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.一是轉(zhuǎn)化為兩個函數(shù)的圖象的交點個數(shù)問題,畫出兩個函數(shù)的圖象,其交點的個數(shù)就是函數(shù)零點的個數(shù),二是轉(zhuǎn)化為的交點個數(shù)的圖象的交點個數(shù)問題第II卷(非選擇題二、填空題:本大題共6小題,每小題5分,共30分。11、①.448②.600【解析】銷售價格與銷售量相乘即得收入,對分段函數(shù),可分段求出最大值,然后比較.【詳解】由題意可得(元),即第14天該商品的銷售收入為448元.銷售收入,,即,.當時,,故當時,y取最大值,,當時,易知,故當時,該商品日銷售收入最大,最大值為600元.故答案為:448;600.【點睛】本題考查分段函數(shù)模型的應用.根據(jù)所給函數(shù)模型列出函數(shù)解析式是基本方法.12、1【解析】利用點到直線的距離公式可得所求的距離.【詳解】圓心坐標為,它到直線的距離為,故答案為:1【點睛】本題考查圓的標準方程、點到直線的距離,此類問題,根據(jù)公式計算即可,本題屬于基礎題.13、①.②.【解析】計算的值,可得出定點坐標;分析可知,對任意的,,利用參變量分離法可求得,分、、三種情況討論,分析函數(shù)在上的單調(diào)性,由此可得出實數(shù)的取值范圍.【詳解】因為,故函數(shù)圖象恒過的定點坐標為;由題意可知,對任意的,,則,因為函數(shù)在上單調(diào)遞增,且當時,,所以,.當時,在上為減函數(shù),函數(shù)為增函數(shù),所以,函數(shù)、在上均為減函數(shù),此時,函數(shù)在上為減函數(shù),合乎題意;當且時,,不合乎題意;當時,在上為增函數(shù),函數(shù)為增函數(shù),函數(shù)、在上均為增函數(shù),此時,函數(shù)在上為增函數(shù),不合乎題意.綜上所述,若在上單調(diào)遞減,.故答案為:;.14、【解析】先化簡,然后分析的奇偶性,將的最大值和小值之和轉(zhuǎn)化為和有關的式子,結(jié)合對勾函數(shù)的單調(diào)性求解出的取值范圍.【詳解】,令,定義域為關于原點對稱,∴,∴為奇函數(shù),∴,∴,,由對勾函數(shù)的單調(diào)性可知在上單調(diào)遞減,在上單調(diào)遞增,∴,,,∴,∴,故答案為:.【點睛】關鍵點點睛:解答本題的關鍵在于函數(shù)奇偶性的判斷,同時需要注意到奇函數(shù)在定義域上如果有最值,那么最大值和最小值一定是互為相反數(shù).15、③⑤【解析】按照平均數(shù)、極差、方差依次分析各序號即可.【詳解】連續(xù)7天新增病例數(shù):0,0,0,0,2,6,6,平均數(shù)是2<3,①錯;連續(xù)7天新增病例數(shù):6,6,6,6,6,6,6,標準差是0<2,②錯;平均數(shù)且極差小于或等于2,單日最多增加4人,若有一日增加5人,其他天最少增加3人,不滿足平均數(shù),所以單日最多增加4人,③對;連續(xù)7天新增病例數(shù):0,3,3,3,3,3,6,平均數(shù)是3且標準差小于2,④錯;眾數(shù)等于1且極差小于或等于4,最大數(shù)不會超過5,⑤對.故答案為:③⑤.16、【解析】先求的的單調(diào)性和值域,然后代入中求得函數(shù)的值域.【詳解】由于為上的增函數(shù),而,,即,對,由于為增函數(shù),故,即函數(shù)的值域為,也即.【點睛】本小題主要考查函數(shù)的單調(diào)性,考查函數(shù)的值域的求法,考查復合函數(shù)值域的求法.屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2)在上遞增,證明見解析(3)【解析】(1)由為1,1上奇函數(shù)可得,再結(jié)合可求出m,n的值;(2)直接利用單調(diào)性的定義判斷即可,(3)由題意可得,而,然后分,和三種情況求解的最大值,使其最大值大于等于,解不等式可得結(jié)果【小問1詳解】依題意函數(shù)是定義在上的奇函數(shù),所以,∴,所以,經(jīng)檢驗,該函數(shù)為奇函數(shù).【小問2詳解】在上遞增,證明如下:任取,其中,,所以,故在上遞增.【小問3詳解】由于對任意的,總存在,使得成立,所以.當,恒成立當時,在上遞增,,所以.當時,在上遞減,,所以.綜上所述,18、(1);(2).【解析】(1)由根式化為分數(shù)指數(shù)冪,再由冪的運算法則計算(2)利用對數(shù)的換底公式和運算法則計算【詳解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=319、(1)選用二次函數(shù)Q=at2+bt+c進行描述,理由見解析;(2)150(天),100(元/10kg).【解析】(1)由所提供的數(shù)據(jù)和函數(shù)的單調(diào)性得出應選函數(shù),再代入數(shù)據(jù)可得蘆薈種植成本Q與上市時間t的變化關系的函數(shù).(2)由二次函數(shù)的性質(zhì)可以得出蘆薈種植成本最低成本.【詳解】(1)由所提供的數(shù)據(jù)可知,刻畫蘆薈種植成本Q與上市時間t的變化關系的函數(shù)不可能是常數(shù)函數(shù),若用函數(shù)Q=at+b,Q=a·bt,Q=alogbt中的任意一個來反映時都應有a≠0,且上述三個函數(shù)均為單調(diào)函數(shù),這與表格所提供的數(shù)據(jù)不符合,所以應選用二次函數(shù)Q=at2+bt+c進行描述.將表格所提供的三組數(shù)據(jù)分別代入函數(shù)Q=at2+bt+c,可得:,解得.所以,刻畫蘆薈種植成本Q與上市時間t變化關系的函數(shù).(2)當時,蘆薈種植成本最低為(元/10kg).【點睛】本題考查求回歸方程,以及回歸方程的應用,屬于中檔題.20、(1)該漁船捕撈3年開始盈利;(2)萬元.【解析】(1)由題設可得,解一元二次不等式即可確定第幾年開始盈利.(2)由平均盈利額,應用基本不等式求最值注意等號成立條件,進而計算總收益.【小問1詳解】由題意,漁船捕撈利潤,解得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論