貴州省安順市平壩第一高級中學2025屆數(shù)學高二上期末檢測試題含解析_第1頁
貴州省安順市平壩第一高級中學2025屆數(shù)學高二上期末檢測試題含解析_第2頁
貴州省安順市平壩第一高級中學2025屆數(shù)學高二上期末檢測試題含解析_第3頁
貴州省安順市平壩第一高級中學2025屆數(shù)學高二上期末檢測試題含解析_第4頁
貴州省安順市平壩第一高級中學2025屆數(shù)學高二上期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

貴州省安順市平壩第一高級中學2025屆數(shù)學高二上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若點P是曲線上任意一點,則點P到直線的最小距離為()A.0 B.C. D.2.將6位志愿者分成4組,其中兩個組各2人,另兩個組各1人,分赴廣交會的四個不同地方服務,不同的分配方案有()種A.· B.·C. D.3.在等差數(shù)列中,已知,則數(shù)列的前9項和為()A. B.13C.45 D.1174.已知是等差數(shù)列的前項和,,,則的最小值為()A. B.C. D.5.盤子里有肉餡、素餡和豆沙餡的包子共個,從中隨機取出個,若是肉餡包子的概率為,不是豆沙餡包子的概率為,則素餡包子的個數(shù)為()A. B.C. D.6.已知雙曲線的左右焦點分別是和,點關于漸近線的對稱點恰好落在圓上,則雙曲線的離心率為()A. B.2C. D.37.拋物線有如下光學性質(zhì):平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點.已知拋物線的焦點為F,一條平行于y軸的光線從點射出,經(jīng)過拋物線上的點A反射后,再經(jīng)拋物線上的另一點B射出,則經(jīng)點B反射后的反射光線必過點()A. B.C. D.8.某學校高一、高二、高三年級的學生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中學生中抽取容量為50的樣本,則應從高三年級抽取的學生數(shù)為()A.10 B.15C.20 D.309.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.10.下列三個命題:①“若,則a,b全為0”的逆否命題是“若a,b全不為0,則”;②若事件A與事件B互斥,則;③設命題p:若m是質(zhì)數(shù),則m一定是奇數(shù),那么是真命題;其中真命題的個數(shù)為()A.3 B.2C.1 D.011.已知等比數(shù)列的前n項和為,,,則()A. B.C. D.12.在正方體中,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線就是其中之一(如圖).給出下列三個結(jié)論:其中,所有正確結(jié)論的序號是____________①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);②曲線C上任意一點到原點的距離都不超過;③曲線C所圍城的“心形”區(qū)域的面積小于314.已知橢圓的短軸長為2,上頂點為,左頂點為,左、右焦點分別是,,且的面積為,點為橢圓上的任意一點,則的取值范圍是______.15.已知函數(shù).(1)若的解集為,求a,b的值;(2)若,a,b均正實數(shù),求的最小值;(3)若,當時,若不等式恒成立,求實數(shù)b的值.16.已知B(,0)是圓A:內(nèi)一點,點C是圓A上任意一點,線段BC的垂直平分線與AC相交于點D.則動點D的軌跡方程為_________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,以點為圓心的圓C與直線l相切(1)求圓C的標方程;(2)過點的直線交圓C于A,B兩點,且,求的方程18.(12分)已知雙曲線的左、右焦點分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.19.(12分)數(shù)列{}的首項為,且(1)證明數(shù)列為等比數(shù)列,并求數(shù)列{}的通項公式;(2)若,求數(shù)列{}的前n項和20.(12分)已知橢圓:的一個焦點坐標為,離心率.(1)求橢圓的方程;(2)設為坐標原點,橢圓與直線相交于兩個不同的點A、B,線段AB的中點為M.若直線OM的斜率為-1,求線段AB的長;(3)如圖,設橢圓上一點R的橫坐標為1(R在第一象限),過R作兩條不重合直線分別與橢圓交于P、Q兩點、若直線PR與QR的傾斜角互補,求直線PQ的斜率的所有可能值組成的集合.21.(12分)命題p:直線l:與圓C:有公共點,命題q:雙曲線的離心率(1)若p,q均為真命題,求實數(shù)m的取值范圍;(2)若為真,為假,求實數(shù)m的取值范圍22.(10分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由導數(shù)的幾何意義求得曲線上與直線平行的切線方程的切線坐標,求出切點到直線的距離即為所求最小距離【詳解】點是曲線上的任意一點,設,令,解得1或(舍去),,∴曲線上與直線平行的切線的切點為,點到直線的最小距離.故選:D.2、B【解析】先按要求分為四組,再四個不同地方,四個組進行全排列.【詳解】兩個組各2人,兩個組各1人,屬于部分平均分組,要除以平均分組的組數(shù)的全排列,故分組方案有種,再將分得的4組,分配到四個不同地方服務,則不同的分配方案有種.故選:B3、C【解析】根據(jù)給定的條件利用等差數(shù)列的性質(zhì)計算作答【詳解】在等差數(shù)列中,因,所以.故選:C4、C【解析】根據(jù),可得,再根據(jù),得,從而可得出答案.【詳解】解:因為,所以,又,所以,所以的最小值為.故選:C.5、C【解析】計算出肉餡包子和豆沙餡包子的個數(shù),即可求得素餡包子的個數(shù).【詳解】由題意可知,肉餡包子的個數(shù)為,從中隨機取出個,不是豆沙餡包子的概率為,則該包子是豆沙餡包子的概率為,所以,豆沙餡包子的個數(shù)為,因此,素餡包子的個數(shù)為.故選:C.6、B【解析】首先求出F1到漸近線的距離,利用F1關于漸近線的對稱點恰落在圓上,可得直角三角形,利用勾股定理得到關于ac的齊次式,即可求出雙曲線的離心率【詳解】由題意可設,則到漸近線的距離為.設關于漸近線的對稱點為M,F1M與漸近線交于A,∴MF1=2b,A為F1M的中點.又O是F1P的中點,∴OA∥F2M,∴為直角,所以△為直角三角形,由勾股定理得:,所以,所以,所以離心率故選:B.7、D【解析】求出、坐標可得直線的方程,與拋物線方程聯(lián)立求出,根據(jù)選項可得答案,【詳解】把代入得,所以,所以直線的方程為即,與拋物線方程聯(lián)立解得,所以,因為反射光線平行于y軸,根據(jù)選項可得D正確,故選:D8、C【解析】根據(jù)抽取比例乘以即可求解.【詳解】由題意可得應從高三年級抽取的學生數(shù)為,故選:C.9、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C10、B【解析】寫出逆否命題可判斷①;根據(jù)互斥事件的概率定義可判斷②;根據(jù)寫出再判斷真假可判斷③.【詳解】對于①,“,則a,b全為0”的逆否命題是“若a,b不全為0,則”,故①錯誤;對于②,滿足互斥事件的概率求和的方法,所以②為真命題;③命題p:若m是質(zhì)數(shù),則m一定是奇數(shù).2是質(zhì)數(shù),但2是偶數(shù),命題p是假命題,那么真命題故選:B.11、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項公式即可求.【詳解】設等比數(shù)列的公比為q,則,.故選:A.12、A【解析】根據(jù)空間向量基本定理,結(jié)合空間向量加法的幾何意義進行求解即可.【詳解】因為,而,所以有,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、①②【解析】根據(jù)題意,先判斷曲線關于軸對稱,由基本不等式的性質(zhì)對方程變形,得到,可判定①正確;當時,,得到曲線右側(cè)部分的點到原點的距離都不超過,再根據(jù)曲線的對稱性,可判定②正確;由軸的上方,圖形的面積大于四點圍成的矩形的面積,在軸的下方,圖形的面積大于三點圍成的三角形的面積,可判斷③不正確.【詳解】根據(jù)題意,曲線,用替換曲線方程中的,方程不變,所以曲線關于軸對稱,對于①中,當時,,即為,可得,所以曲線經(jīng)過點,再根據(jù)對稱性可知,曲線還經(jīng)過點,故曲線恰好經(jīng)過6個整點,所以①正確;對于②中,由①可知,當時,,即曲線右側(cè)部分的點到原點的距離都不超過,再根據(jù)曲線的對稱性可知,曲線上任意一點到原點的距離都不超過,所以②正確;對于③中,因為在軸的上方,圖形的面積大于四點圍成的矩形的面積,在軸的下方,圖形的面積大于三點圍成的三角形的面積,所以曲線所圍城的“心形”區(qū)域的面積大于3,所以③不正確.故選:①②14、【解析】根據(jù)的面積和短軸長得出a,b,c的值,從而得出的范圍,得到關于的函數(shù),從而求出答案【詳解】由已知得,故,∵的面積為,∴,∴,又,∴,,∴,又,∴,∴.即的取值范圍為.故答案為點睛】本題考查了橢圓的簡單性質(zhì),函數(shù)最值的計算,熟練掌握橢圓的基本性質(zhì)是解題的關鍵,屬于中檔題15、(1),;(2);(3)【解析】(1)根據(jù)韋達定理解求得答案;(2)根據(jù)題意,,進而化簡,然后結(jié)合基本不等式解得答案;(3)討論,和x=2三種情況,進而分參轉(zhuǎn)化為求函數(shù)的最值問題,最后求得答案.【小問1詳解】由已知可知方程的兩個根為,2,由韋達定理得,,故,.【小問2詳解】由題意得,,所以,當且僅當時取等號.【小問3詳解】若,,不等式恒成立.當時,,此時,即對于恒成立,單調(diào)遞減,此時,,所以;當時,,此時,即即對于恒成立,在單調(diào)遞減,此時,所以;當x=2時,.綜上所述:.16、【解析】利用橢圓的定義可得軌跡方程.【詳解】連接,由題意,,則,由橢圓的定義可得動點D的軌跡為橢圓,其焦點坐標為,長半軸長為2,故短半軸長為1,故軌跡方程為:.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)點到直線的距離公式求出半徑,即可得到圓C的標方程;(2)根據(jù)弦長公式可求出圓心C到直線的距離,再根據(jù)點到直線的距離公式結(jié)合分類討論思想即可求出【小問1詳解】設圓C的半徑為r,∵C與l相切,∴,∴圓C的標準方程為【小問2詳解】由可得圓心C到直線的距離∴當?shù)男甭什淮嬖跁r,其方程為,此時圓心到的距離為3,符合條件;當?shù)男甭蚀嬖跁r,設,圓心C到直線的距離,解得,此時的方程為,即綜上,的方程為或18、(1);(2).【解析】(1)聯(lián)立直線方程與雙曲線方程,求得交點的坐標,再用兩點之間的距離公式即可求得;(2)根據(jù)(1)中所求,利用兩點之間的距離公式,即可求得三角形周長.【小問1詳解】設點的坐標分別為,由題意知雙曲線的左、右焦點坐標分別為、,直線的方程,與聯(lián)立得,解得,代入的方程為分別解得.所以.【小問2詳解】由(1)知,,,所以△的周長為.19、(1)證明見解析,;(2).【解析】(1)利用給定的遞推公式變形,再利用等比數(shù)列定義直接判斷并求出通項得解.(2)由(1)的結(jié)論求出,再利用裂項相消法計算作答.【小問1詳解】數(shù)列{}中,,則,由得:,所以數(shù)列是首項為3,公比為2的等比數(shù)列,則有,即,所以數(shù)列{}的通項公式是.【小問2詳解】由(1)知,,,則,所以數(shù)列{}的前n項和.20、(1);(2);(3).【解析】(1)根據(jù)給定條件求出橢圓長半軸長a即可計算得解.(2)將代入橢圓的方程,再結(jié)合給定條件求出k值即可計算出AB的長.(3)設出直線PR的方程,再與橢圓的方程聯(lián)立求出點P坐標,同理可得點Q坐標,計算PQ的斜率即可作答.【小問1詳解】依題意,橢圓的半焦距c=1,而,解得,則,所以橢圓的方程是:.【小問2詳解】由消去y并整理得:,解得,,于是得線段AB的中點,直線OM斜率為,解得,因此,,所以線段AB的長為.【小問3詳解】由(1)知,點,依題意,設直線PR的斜率為,直線PR方程為:,由消去y并整理得,,設點,則有,顯然直線QR的斜率為-t,設點,同理有,于是得直線PQ的斜率,所以直線PQ的斜率的所有可能值組成的集合.【點睛】方法點睛:求橢圓的標準方程有兩種方法:①定義法:根據(jù)橢圓的定義,確定,的值,結(jié)合焦點位置可寫出橢圓方程②待定系數(shù)法:若焦點位置明確,則可設出橢圓的標準方程,結(jié)合已知條件求出a,b;若焦點位置不明確,則需要分焦點在x軸上和y軸上兩種情況討論.21、(1),;(2).【解析】(1)求出,成立的等價條件,即可求實數(shù)的取值范圍;(2)若“”為假命題,“”為真命題,則、一真一假,當真假時,求出的取值范圍,當假真時,求出的取值范圍,然后取并集即可得答案【小問1詳解】若命題為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論