版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省臨沭縣2025屆數(shù)學高二上期末學業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,,則()A. B.C.1 D.22.雙曲線的漸近線方程是()A. B.C. D.3.已知橢圓和雙曲線有共同焦點,是它們一個交點,且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.4.已知橢圓的長軸長為,短軸長為,則橢圓上任意一點到橢圓中心的距離的取值范圍是()A. B.C. D.5.已知等差數(shù)列的前n項和為,且,則()A.2 B.4C.6 D.86.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.如圖,某綠色蔬菜種植基地在A處,要把此處生產(chǎn)的蔬菜沿道路或運送到形狀為四邊形區(qū)域的農(nóng)貿(mào)市場中去,現(xiàn)要求在農(nóng)貿(mào)市場中確定一條界線,使位于界線一側的點沿道路運送蔬菜較近,而另一側的點沿道路運送蔬菜較近,則該界線所在曲線為()A.圓 B.橢圓C.雙曲線 D.拋物線8.已知函數(shù),則下列說法正確的是()A.的最小正周期為 B.的圖象關于直線C.的一個零點為 D.在區(qū)間的最小值為19.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.4510.若橢圓上一點到C的兩個焦點的距離之和為,則()A.1 B.3C.6 D.1或311.若將一個橢圓繞其中心旋轉90°,所得橢圓短軸兩頂點恰好是旋轉前橢圓的兩焦點,這樣的橢圓稱為“對偶橢圓”,下列橢圓中是“對偶橢圓”的是()A. B.C. D.12.已知橢圓的離心率為,直線與橢圓交于兩點,為坐標原點,且,則橢圓的方程為A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.寫出一個同時滿足下列條件①②③的圓C的標準方程:__________①圓C的圓心在第一象限;②圓C與x軸相切;③圓C與圓外切14.如圖,正方體的棱長為1,C、D分別是兩條棱的中點,A、B、M是頂點,那么點M到截面ABCD的距離是____________.15.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學在早上6:35至6:50之間隨機到達該車站,乘開往A校的公交車,公交車準時發(fā)車,則他等車時間不超過5分鐘的概率為______16.設點是雙曲線上的一點,、分別是雙曲線的左、右焦點,已知,且,則雙曲線的離心率為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知正三棱柱底面邊長為,是上一點,是以為直角頂點的等腰直角三角形,(1)證明:是的中點;(2)求二面角的大小18.(12分)已知點和圓.(1)求圓的圓心坐標和半徑;(2)設為圓上的點,求的取值范圍.19.(12分)某電腦公司為調查旗下A品牌電腦的使用情況,隨機抽取200名用戶,根據(jù)不同年齡段(單位:歲)統(tǒng)計如下表:分組頻率/組距0.010.040.070.060.02(1)根據(jù)上表,試估計樣本的中位數(shù)、平均數(shù)(同一組數(shù)據(jù)以該組區(qū)間的中點值為代表,結果精確到0.1);(2)按照年齡段從內的用戶中進行分層抽樣,抽取6人,再從中隨機選取2人贈送小禮品,求恰有1人在內的概率20.(12分)設點,動圓P經(jīng)過點F且和直線相切,記動圓的圓心P的軌跡為曲線W(1)求曲線W的方程;(2)直線與曲線W交于A、B兩點,其中O為坐標原點,已知點T的坐標為,記直線TA,TB的斜率分別為,,則是否為定值,若是求出,不是說明理由21.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)過點作圓C的切線,求切線的方程22.(10分)茶樹根據(jù)其茶葉產(chǎn)量可分為優(yōu)質茶樹和非優(yōu)質茶樹,某茶葉種植研究小組選取了甲,乙兩塊試驗田來檢驗某種茶樹在不同的環(huán)境條件下的生長情況.研究人員將100株該種茶樹幼苗在甲,乙兩塊試驗田中進行種植,成熟后統(tǒng)計每株茶樹的茶葉產(chǎn)量,將所得數(shù)據(jù)整理如下表所示:優(yōu)質茶樹非優(yōu)質茶樹甲試驗田a25乙試驗田10b已知甲試驗田優(yōu)質茶樹的比例為50%(1)求表中a,b的值;(2)根據(jù)表中數(shù)據(jù)判斷,是否有99%的把握認為甲,乙兩塊試驗田的環(huán)境差異對茶樹的生長有影響?附:,其中.0.100.050.01k2.7063.8416.635
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】結合遞推關系式依次求得的值.【詳解】因為,,所以,得由,得.故選:C2、A【解析】先將雙曲線的方程化為標準方程得,再根據(jù)雙曲線漸近線方程求解即可.【詳解】解:將雙曲線的方程化為標準方程得,所以,所以其漸近線方程為:,即.故選:A.3、D【解析】設橢圓長半軸長為a1,雙曲線的半實軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結論【詳解】如圖,設橢圓的長半軸長為a1,雙曲線的半實軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題4、A【解析】不妨設橢圓的焦點在軸上,設點,則,且有,利用二次函數(shù)的基本性質可求得的取值范圍.【詳解】不妨設橢圓的焦點在軸上,則該橢圓的標準方程為,設點,則,且有,所以,.故選:A.5、B【解析】根據(jù)等差數(shù)列前n項和公式,結合等差數(shù)列下標的性質、等差數(shù)列通項公式進行求解即可.【詳解】設等差數(shù)列的公差為,,,故選:B6、C【解析】利用函數(shù)在上單調遞減即可求解.【詳解】解:因為函數(shù)在上單調遞減,所以若,,則;反之若,,則.所以若,則“”是“”的充要條件,故選:C.7、C【解析】設是界限上的一點,則,即,再根據(jù)雙曲線的定義即可得出答案.【詳解】解:設是界限上的一點,則,所以,即,在中,,所以點的軌跡為雙曲線,即該界線所在曲線為雙曲線.故選:C.8、D【解析】根據(jù)余弦函數(shù)的圖象與性質判斷其周期、對稱軸、零點、最值即可.【詳解】函數(shù),周期為,故A錯誤;函數(shù)圖像的對稱軸為,,,不是對稱軸,故B錯誤;函數(shù)的零點為,,,所以不是零點,故C錯誤;時,,所以,即,所以,故D正確.故選:D9、C【解析】設雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設點是雙曲線與截面的一個交點,設雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:10、B【解析】討論焦點的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.11、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進而判斷所給命題的真假【詳解】解:因為橢圓短的軸兩頂點恰好是旋轉前橢圓的兩焦點,即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:12、D【解析】根據(jù)等腰直角三角形的性質可得,將代入橢圓方程,結合離心率為以及性質列方程組求得與的值,從而可得結果.【詳解】設直線與橢圓在第一象限的交點為,因為,所以,即,由可得,,故所求橢圓的方程為.故選D.【點睛】本題主要考查橢圓的標準方程與性質,以及橢圓離心率的應用,意在考查對基礎知識掌握的熟練程度,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一,但圓心坐標需滿足,)【解析】首先設圓的圓心和半徑,根據(jù)條件得到關于的方程組,即可求解.【詳解】設圓心坐標為,由①可知,半徑為,由②③可知,整理可得,當時,,,所以其中一個同時滿足條件①②③的圓的標準方程是.故答案為:(答案不唯一,但圓心坐標需滿足,)14、【解析】由題意建立空間直角坐標系,然后結合點面距離公式即可求得點M到截面ABCD的距離.【詳解】建立如圖所示的空間直角坐標系,可得A(0,0,0),B(1,1,0),D(0,,1),M(0,1,0),∴(0,1,0),(1,1,0),(0,,1),設(x,y,z)為平面ABCD的法向量,則,取y=﹣2,可得x=2,z=1,∴(2,﹣2,1),∴M到截面ABCD的距離d故答案為.【點睛】本題主要考查空間直角坐標系及其應用,點面距離的計算等知識,意在考查學生的轉化能力和計算求解能力.15、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達,則所求概率.故答案為:.16、【解析】由雙曲線的定義可求得、,利用勾股定理可得出關于、的齊次等式,進而可求得該雙曲線的離心率.【詳解】由雙曲線定義可得,故,由勾股定理可得,即,可得,因此,該雙曲線的離心率為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)根據(jù)正棱柱的性質,結合線面垂直的判定定理、直角三角形的性質、正三角形的性質進行證明即可;(2)根據(jù)線面垂直的判定定理和性質,結合二面角的定義進行求解即可.【小問1詳解】證明:在正三棱柱中,平面,平面,則,又是以為直角頂點的等腰直角三角形,則,且,平面,故平面,而平面,所以,又為正三角形,所以為的中點;【小問2詳解】在正中,取的中點為,則,又平面,則,且,平面,故平面,取的中點為,且的中點為,則,故平面,而平面,所以,在等腰直角中,取的中點為,則,,平面,所以平面,而平面,所以,故為二面角平面角,又,則,,所以在中,,即:,故二面角的大小為.:18、(1)圓心的坐標為,半徑;(2)【解析】(1)利用配方法化圓的一般方程為標準方程,可得圓心坐標與半徑;(2)由兩點間的距離公式求得,得到與,則的取值范圍可求【小問1詳解】解:由,得,圓心的坐標為,半徑;【小問2詳解】解:,,,,的取值范圍是19、(1)中位數(shù)為38.6,平均數(shù)為38.5歲;(2).【解析】(1)由中位數(shù)分數(shù)據(jù)兩邊的頻率相等,列方程求中位數(shù);根據(jù)各組數(shù)據(jù)的中點數(shù)乘以頻率即可得平均數(shù);(2)由分層抽樣確定從中各抽4人、2人,列舉出隨機選取2人的所有組合,得到恰有1人在的組合數(shù),即可求概率.【詳解】(1)中位數(shù)在中,設為,則,解得.平均數(shù)為歲.所以樣本的中位數(shù)約為38.6,平均數(shù)為38.5歲.(2)根據(jù)分層抽樣法,其中位于中的有4人,記為,,,;位于中的有2人,記為,.從6人中抽取2人,有,,,,,,,,,,,,,,,共15種情況,恰有1人在內的有,,,,,,,,共8種情況,∴恰有1人在內的概率為.【點睛】關鍵點點睛:由中位數(shù)的性質以及平均數(shù)與各組數(shù)據(jù)中點值、頻率的關系求中位數(shù)、平均數(shù);根據(jù)分層抽樣確定各組選取人數(shù),利用列舉法求概率.20、(1);(2)是定值,.【解析】(1)根據(jù)給定條件結合拋物線定義直接求解作答.(2)聯(lián)立直線與拋物線方程,借助韋達定理、斜率坐標公式計算作答.【小問1詳解】過點P作直線的垂線,垂足為點N,依題意,,則動點P的軌跡是以為焦點,直線為準線的拋物線,所以曲線W的方程是.【小問2詳解】設,,由消去x并整理得:,則,,因,,則,,因此,所以.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關;(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值21、(1)(2)或【解析】(1)由圓心在直線上,設,由點在圓上,列方程求,由此求出圓心坐標及半徑,確定圓的方程;(2)當切線的斜率存在時,設其方程為,由切線的性質列方程求,再檢驗直線是否為切線,由此確定答案.小問1詳解】因為圓C的圓心在直線上,設圓心的坐標為,圓C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代簡約風格與科技公司辦公環(huán)境的融合
- 現(xiàn)代物流技術與醫(yī)療物資保障體系
- 溝通技巧在教育工作中的創(chuàng)新應用
- 環(huán)保技術在現(xiàn)代城市建設中的應用
- 物流信息技術在商業(yè)領域的應用
- Unit 3 Where did you go?PartB (說課稿)-2023-2024學年人教PEP版英語六年級下冊
- 2《燭之武退秦師》說課稿-2024-2025學年高一語文下學期同步說課稿(統(tǒng)編版必修下冊)
- 2024新教材高中地理 第四章 區(qū)域發(fā)展戰(zhàn)略 第二節(jié) 我國區(qū)域發(fā)展戰(zhàn)略說課稿 湘教版必修第二冊
- Unit3 Amazing animals(說課稿)-2024-2025學年人教PEP版(2024)英語三年級上冊001
- 2024年高中化學 第三章 晶體結構與性質 章末整合說課稿 新人教版選修3
- 2025屆高中數(shù)學一輪復習專練:橢圓(含解析)
- 立春氣象與生活影響模板
- 中國服裝零售行業(yè)發(fā)展環(huán)境、市場運行格局及前景研究報告-智研咨詢(2025版)
- 初一英語閱讀理解100篇七年級上冊英語閱讀理解及答案
- 2024年廣東省深圳市中考道德與法治試題卷
- 汽車車身密封條設計指南
- DB4101-T 121-2024 類家庭社會工作服務規(guī)范
- DB53∕T 1269-2024 改性磷石膏用于礦山廢棄地生態(tài)修復回填技術規(guī)范
- 2024建安杯信息通信建設行業(yè)安全競賽題庫(試題含答案)
- JBT 14727-2023 滾動軸承 零件黑色氧化處理 技術規(guī)范 (正式版)
- 術后譫妄及護理
評論
0/150
提交評論