英文邁向可持續(xù)燃料的共同標(biāo)準(zhǔn)_第1頁
英文邁向可持續(xù)燃料的共同標(biāo)準(zhǔn)_第2頁
英文邁向可持續(xù)燃料的共同標(biāo)準(zhǔn)_第3頁
英文邁向可持續(xù)燃料的共同標(biāo)準(zhǔn)_第4頁
英文邁向可持續(xù)燃料的共同標(biāo)準(zhǔn)_第5頁
已閱讀5頁,還剩83頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

TowardsCommon

CriteriaforSustainableFuels

>

>

INTERNATIONALENERGY

AGENCY

TheIEAexaminesthefullspectrum

ofenergyissues

includingoil,gasandcoalsupplyand

demand,renewableenergytechnologies,electricitymarkets,energyefficiency,

accesstoenergy,

demandside

managementand

muchmore.Throughitswork,theIEA

advocatespoliciesthatwillenhancethe

reliability,affordabilityandsustainabilityofenergyinits

31membercountries,

13association

countriesandbeyond.

Thispublicationandany

mapincludedhereinare

withoutprejudicetothe

statusoforsovereigntyoveranyterritory,tothe

delimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.

IEAmembercountries:

AustraliaAustria

BelgiumCanada

CzechRepublic

DenmarkEstonia

Finland

France

GermanyGreece

HungaryIreland

Italy

Japan

Korea

Lithuania

LuxembourgMexico

NetherlandsNewZealandNorway

Poland

Portugal

SlovakRepublicSpain

Sweden

Switzerland

RepublicofTürkiyeUnitedKingdom

UnitedStates

TheEuropean

CommissionalsoparticipatesintheworkoftheIEA

IEAassociationcountries:

ArgentinaBrazil

China

Egypt

India

IndonesiaKenya

MoroccoSenegal

Singapore

SouthAfricaThailand

Ukraine

Source:IEA.

InternationalEnergyAgency

Website:

TowardsCommonCriteriaforSustainableFuelsAbstract

IEA.CCBY4.0.

PAGE|3

Abstract

Sustainablefuelsplayacrucialroleincleanenergytransitions.Theycomplementdirectelectrificationandenergyefficiencymeasuresindecarbonisingsectorsforwhichemissionsarehardtoabate,whilecontributingtoenergydiversificationandsecurity.UndertheIEA’sNetZeroEmissionsby2050(NZE)Scenario,thedemandforlow-emissionfuelssuchasliquidbiofuels,biogases,hydrogenandhydrogen-basedfuelswouldneedtodoublefromcurrentlevelsby2030anddoubleagainby2050.Despitetheirimportance,noneofthemainsustainablefueloptionsareontrackforanetzeropathway.

Accelerateddeploymentofsustainablefuelsdependsinpartonachievingacommonunderstandingofwhatmakesafuel“sustainable”.Numerousframeworksandcertificationschemesforsustainablefuelshavebeenestablishedworldwide.Termssuchas“green,”“blue,”or“advanced”arefrequentlyusedtodescribethesustainabilityfeaturesoffuelsandtodifferentiatethemfromtheirunabatedfossilcounterparts.However,thereisnointernationalconsensusonthemeaningoftheseterms.Theirdefinitionsareinconsistentand,critically,theydonotusuallyprovidequantitativeinformationaboutgreenhousegasemissions.

Thisreport–producedinsupportofBrazil’sG20Presidency–exploresthefeasibilityandimplicationsofsettingupcommoncriteriatoenablefaircomparisonsofsustainablefuels.Itmapscommonalitiesanddifferencesamongthestandards,regulationsandcertificationsusedforsustainablefuelsacrossdifferentregionsandmarkets.Itreviewstypicalcarbonintensitiesandtheimprovementpotentialofvariousfuelproductionpathwaysandsetsoutpolicyconsiderationsforgovernmentsthatwishtoworktowardcommoncriteriaforsustainablefuels.

TowardsCommonCriteriaforSustainableFuelsAcknowledgements

IEA.CCBY4.0.

PAGE|4

Acknowledgements,contributorsandcredits

ThisreportwaspreparedjointlybytheRenewableEnergyDivisionandtheEnergyTechnologyPolicyDivisionoftheInternationalEnergyAgency.ThestudywasdesignedanddirectedbyPaoloFrankl,HeadoftheRenewableEnergyDivision.

SeniorEnergyAnalystIlkkaHannulawastheleadauthorofthereportandcoordinateditsproduction.Otherauthorswere(inalphabeticalorder)AnaAlcalde,JoseBermudez-Menendez,HeribBlancoandPaoloFrankl.

ThereportbuildsuponandexpandsonanalysispresentedinthereportsCarbonAccountingforSustainableBiofuels(IEA,2024)andTowardshydrogendefinitionsbasedontheiremissionsintensity(IEA,2023),aswellastheGlobalHydrogenReview2024(IEA,forthcoming).

ValuablecommentsandfeedbackwereprovidedbyseniormanagementandcolleagueswithintheIEA,includingKeisukeSadamori,TimurGül,andUweRemme.

TheCommunicationsandDigitalOfficeprovidedproductionsupport.ParticularthanksgotoJethroMullenandhisteam:AstridDumond,LivGaunt,ClaraVallois,LorenzoSquillaceandPoeliBojorquez.NicolaClarkeditedthereport.

ManyexpertsfromoutsideoftheIEAprovidedvaluableinput,commentedandreviewedthisreport.Theyinclude:

Countries

Brazil(MarianadeAssisEspécie,DirectorofEnergyTransitionattheBrazilianMinistryofMinesandEnergyandLaísdeSouzaGarcia,HeadoftheRenewableEnergyDivision–MinistryofExternalRelations);Germany(FederalMinistryforEconomicAffairsandClimateAction);Japan(MrTakashiHasegawa,FuelSupplyInfrastructurePolicyDivision,MinistryofEconomy,TradeandIndustry);UnitedKingdom(HMTreasury,DepartmentforEnergySecurityandNetZero).

Organisations

Catavento(ClarissaLins,BrunaMascotteandTamaraFain),H2Global(FlorianGeyer),HydrogenCouncil(DariaNochevnikandAndreiTchouvelev),IPHE(LaurentAntoniandNoévanHulst),PolytechnicUniversityofTurin(DavidChiaramontiandMatteoPrussi),Raízen(SimonePereiradeSouza).

TowardsCommonCriteriaforSustainableFuelsExecutivesummary

IEA.CCBY

PAGE|5

Executivesummary

Sustainablefuelsplayacrucialroleincleanenergytransitions

Sustainablefuelscomplementdirectelectrificationandenergyefficiencymeasuresindecarbonisingsectorsforwhichemissionsarehardtoabate.

UndertheIEA’sNetZeroEmissionsby2050(NZE)Scenario,thedemandforlow-emissionfuelssuchasliquidbiofuels,biogases,hydrogenandhydrogen-basedfuelswouldneedtodoublefromcurrentlevelsby2030anddoubleagainby2050.Theyfacilitatedecarbonisationacrossarangeofend-usesectors,especiallypartsoftransportandindustry,whilecontributingtoenergydiversificationandsecurity.

Noneofthemainsustainablefueloptionsareontrackforanetzeropathway.

Therearepotentiallyhundredsofpathwaysavailableforproducingfuels.Biofuelsarecurrentlythemostdevelopedandcost-effectivealternativetofossilfuels.However,substantialeffortsareneededtoexpandanddiversifysustainablebiomassfeedstocksupplies,commercialisenewprocessingtechnologiesandharmonisesustainabilityframeworkstoaddressconcernsrelatedtolarge-scaledeployment.Hydrogenhassignificantindustrialdemandtoday,butsupplyoflow-emissionhydrogenisverylimitedsofar.Inadditiontoscalinguplow-emissionproductionandreducingcost,significantinvestmentsindistributioninfrastructureandend-useequipmentareneeded.Hydrogen-basedlow-emissionfuelstypicallyoffersomebenefitsintermsoflowerinfrastructurerequirementscomparedtopurehydrogen,buttheyaremoreexpensivetoproduce,andtheirscale-upisfurtherlimitedbyaccesstolow-cost,low-emissionsourcesofCO?feedstock(exceptforammoniawhichiscarbon-free).

Accelerateddeploymentofsustainablefuelsdependsinpartonachievingacommonunderstandingofwhatmakesafuel“sustainable”.Numerousframeworksandcertificationschemesforsustainablefuelshavebeenestablishedworldwide.Termssuchas“green,”“blue,”or“advanced”arefrequentlyusedtodescribethesustainabilityfeaturesoffuelsandtodifferentiatethemfromtheirunabatedfossilcounterparts.However,thereisnointernationalconsensusonthemeaningoftheseterms.Theirdefinitionsareinconsistentand,critically,theydonotusuallyprovidequantitativeinformationaboutGHGemissions.

4.0.

Thisreport–producedinsupportofBrazil’sG20Presidency–exploresthefeasibilityandimplicationsofsettingupcommoncriteriatoenablefaircomparisonsofsustainablefuels.Itmapscommonalitiesanddifferencesamongthestandards,regulationsandcertificationsusedforsustainablefuelsacrossdifferentregionsandmarkets.Itreviewstypicalcarbonintensitiesandthe

IEA.CCBY4.0.

PAGE|6

improvementpotentialofvariousfuelproductionpathwaysandsetsoutpolicyconsiderationsforgovernmentsthatwishtoworktowardcommoncriteriaforsustainablefuels.ThereportbuildsuponandexpandsonanalysispresentedinthereportsCarbonAccountingforSustainableBiofuels(IEA,2024)andTowardshydrogendefinitionsbasedontheiremissionsintensity(IEA,2023),aswellastheGlobalHydrogenReview2024(IEA,forthcoming).

SupplychainGHGintensityprovidesarobustbasisforafairandtransparentcomparison

Manystandards,regulationsandcertificationsareinusetodayforsustainablefuelswithsomecommonalities,buttherearealsoimportantdifferences.Generally,GHGaccountingishandledsimilarlyacrossthemainbiofuelpolicyframeworks,withthenotableexceptionofland-usechange.TheGHGintensitiescanvarywidelyamongsimilarbiofuelproductionpathways,butmethodologiesfortheirassessmentarerobust,andcausesfordifferencesarewellunderstood.Theytypicallyrelatetoregionaldifferences,methodologicalchoices,anddatainputqualityandrepresentativeness.Incontrast,impactsofland-usechangeareamajorsourceofdisagreementacrossdifferentbiofuelpolicyframeworks.Forhydrogenand/orhydrogenderivatives,therearecurrently34certificationschemes.MorethanhalfoftheseschemesrequireaGHGintensityoflessthan33gCO?-eq/MJ(4kgCO?-eq/kgH2),aroundtwo-thirdslowerthanemissionsofproductionfromunabatednaturalgas,themostcommonproductionpathwaytoday.However,mostschemesconsideronlyemissionsfromproductionanddonotincludetransportanddistributionofthefinalfuelintheirscope.

Foraconsistentcomparisonacrossfuels,supplychainGHGintensityshouldbecalculatedatthepointofdeliveryandincludecompleteoxidationofthefuel.GHGintensity(expressedingCO?-eq/MJ)shouldconsidernotonlyproduction,butalsoemissionsrelatedtotransportanddistributiontothepointofdelivery,sincethesestepscanaddsignificantlytosupplychainemissionsforcertainfuels(e.g.hydrogen).GHGintensitycalculationsshouldalsoassumecompleteoxidationofthefueltoaccountforanyfossilcarboninputsthatareusedduringtheproductionprocess–e.g.forfuelssuchassyntheticmethanolorkerosene.Inthecaseoffuelsproducedviaelectrolysis,embodiedGHGemissionsfromthemanufactureofcaptivepowerplants(e.g.renewableornuclear)shouldalsobeincludedwithinthesystemboundary.Forbiofuels,directland-usechangeemissionsshouldbeincludedintheGHGmetrics,astheyaremeasurableandverifiableovertime.Indirectland-usechangeshouldbetreatedseparately(seebelow).

MinimumrequirementsforemissionsreductioncomparedtounabatedfossilfuelscanbesetbyestablishingaGHGintensitythreshold.Suchathresholdshouldbesetlowenoughtotriggerambitiousemissionreductions.Atthesame

IEA.CCBY4.0.

PAGE|7

time,itshouldalsobeabletoensurethatabroadrangeoftechnologiesandemergingpathwayswithloweremissionsthanunabatedfossilfuelscanplayaroleintheearlyphasesofthetransition,attractinvestmentandbenefitfromlearningatrelevantscales.Thisisespeciallyrelevantincountriesthatcannotaffordtogodirectlytonear-zero-emissionfuels.Asmuchofthesustainablefuelsectorisstillnascent,settingextremelylowthresholdsattheoutsetcanhindertechnologicaldevelopment,increasecostsandultimatelyslowprogressinreducingglobalaveragefuelemissions.Inmanycases,aphasedapproachtowardsambitiousthresholdscanbedesirable.

GHGintensityshouldbecomplementedbyabroaderportfolioofpoliciescoveringnon-GHGimpactsoffuels.LifecycleGHGemissionsarejustoneofmanysustainabilityfactorstoconsiderwhenexpandingtheproductionanduseoflow-emissionfuels.Agrowingnumberofpoliciesarealsoaddressingissueslikefoodandwatersecurity,biodiversityandothersocioeconomicfactors,suchasensuringasecureandaffordableenergysupplyandsupportingajusttransition.

PoliciesshouldrewardbetterGHGperformanceanddrivecontinuousimprovementovertime

SeveralmeasurescanbeappliedtoimproveGHGperformanceoffuels,butincentivesarerequiredtocoverextracosts.FuelpathwaysshowawiderangeofGHGintensities,butmeasureslikeadoptingsustainablefarmingpractices,usingcarboncaptureutilisationandstorage(CCUS),switchingtorenewableenergyforprocessing,andpoweringelectrolyserswithdedicatedlow-emissionenergy,canleadtosignificantimprovementsalreadytoday.AllfuelpathwayscanachievelowGHGintensitiesovertime,butmeasurestoreduceemissionsarelikelytoincreasecosts,requiringmarketandpolicyframeworksthatincentivisefuelpathwayswithsuperiorGHGperformance,supportedbymeasurableandverifiablelifecycledata.

AtieredGHGlabellingsystemforfuelsallowstodefineaminimumrequirement,identifyandrewardbetterperformance,anddrivecontinuousimprovement.AlabellingsystemthatgroupssupplychainGHGintensities(gCO?-eq/MJ)intoasmallsetofdistinctlevelsoffersarobustandtransparentwayofcommunicatingthesustainabilityoffuelstoinvestors,policymakersandend-users.Basedonconsistentmethodologiesithelpsthemutualrecognitionofexistingschemesandfostersregulatoryinteroperability.Itenablespoliciestoidentifyandrewardbetterperformance,bothtodayandovertime,whilestillallowingaportfoliooflower-GHGfuelstocontributetodecarbonisationintheearlyphaseofthetransition.Technologiestendtoimproveastheyscaleupandcompeteinthemarkets,makingitimportanttofocusonpotentialfutureGHGintensitylevelsratherthancurrentones(seearrowsinthefigurebelow).Thethresholdandtierscouldberevisedatcertainintervals(e.g.every5years)tobecomemorestringent,inlinewiththegradualtransitionoftheglobalenergysystemtowardsnetzeroemissionsby2050.

TowardsCommonCriteriaforSustainableFuelsExecutivesummary

IEA.CCBY4.0.

PAGE|8

ExampleofaquantitativeGHGintensitylabellingsystemforselectedsustainablefuelpathways

IEA.CCBY4.0.

Note:Forassumptionsanddefinitions,seeFigure4.1.

Commonpoliciesandinternationalcollaborationarekeytoattractinvestment

Theabsenceofunifiedpolicyapproachestoaccountforpathway-specificfactorscandeterinvestmentand,ultimately,slowdowntheenergytransition.

Certainemissiondriversandsustainabilityattributesareuniquetospecificfuelpathwaysandcannotbesolvedwithinlifecycleassessment(LCA)andintegratedintheproposedGHGlabellingscheme.Examplesofsuchpathway-specificsustainabilityaspectsincludeindirectland-usechangeforbiofuels,additionalrequirementsfortheelectricityusedforhydrogenproducedfromrenewables,andthesourceofCO2andallocationofbenefitsforhydrogen-basedfuels.Pragmaticpolicysolutionsareneededtopreventthemfrombecominganobstacleforthedeploymentofsustainablefuels.

Indirectland-usechange(iLUC)concernsshouldbeaddressedbyadoptingrisk-basedapproachesintheneartermandstrivingtodevelopgloballand-usepoliciesovertime.AlthoughpotentialiLUCimpactscanbesignificant,theycannotbedirectlymeasuredorverified,onlymodelled.RatherthantryingtocalculateindirectemissionsintermsofgCO2-eq/MJforagivenbiofuelpathway,alternativemethodsshouldbeapplied.Intheshortterm,qualitativerisk-basedapproachesthatensurecompliancewithlow-iLUC-riskrequirementscanaddresspotentialimpactsandencourageimprovements.Overthelongterm,policiesshouldshiftfrommodellingimpactstoenforcingdirectland-useregulationsgloballyandpromotingbetteragriculturallandmanagementpractices.Inemergencies,suchas

TowardsCommonCriteriaforSustainableFuelsExecutivesummary

IEA.CCBY4.0.

PAGE|9

economiccrises,geopoliticaleventsorextremeweatherconditions,governmentsshouldconsidertemporarymeasurestoaddressfoodsecurityconcerns.Biofuelpoliciesshouldbedesignedtobeflexibleduringperiodsoftightnessinglobalagriculturalmarketstoavoidamplifyingorprolongingpricespikes.

Extrarequirementsforelectricityusedtoproduceelectrolytichydrogen,suchasadditionality,temporalandspatialcorrelation,shouldbeappliedthoughtfully.Toaddresspotentialindirectsystemimpacts,somejurisdictionsareplacingextrarequirementsbeyondtheGHGintensityofthepowergridmix,suchasadditionalityandtemporalandspatialcorrelationfortherenewableelectricityusedforhydrogenproduction.However,powersystemsaredecarbonisingrapidlyworldwide,independentofhydrogendeployment.Settingverystrictcriteriaduringtheearlystagesoftechnologyscale-uprisksdelayinginvestments,impedingthedevelopmentofsupplychainsandinfrastructure,andhinderingpotentialbenefitsintermsofcreatingnewelectricitydemandandnewflexibilityresourcesforintegratingvariablerenewables.Inthelongterm,possibleindirectsystemimpactswillfadeastheroleoffossilfuelsinpowersystemsdiminishes.UndertheNZEScenario,powersystemswouldbefullydecarbonisedgloballybefore2045.

ThecaptureanduseoffossilCO2fromexistingindustrialsourcescouldtemporarilyfacilitateproductionofloweremissionhydrogen-basedfuels,asCO2supplyfrombiogenicsourcesanddirectaircapturegrowsovertime.TheCO2thatisusedtoproducehydrogen-basedfuelsisultimatelyreleasedbackintotheatmosphere,andthereforeitisimportanttoconsiderthesourceofCO2feedstock.Thebiogenicordirectair-capturedCO2componentiscarbon-neutralwhenthefuelisburned.Incontrast,iffossilCO2capturedfromexistingindustrialprocessesisusedasfeedstock,system-levelemissionsareonlypartiallyreduced.Theopportunityliesinthepossibilitytohelpjumpstartthisnewindustryandrelevantsupplychains,whileachievinginitialemissionreductions.However,robust,transparentandmutuallyagreedemissionsallocationmethodsneedtobeinplacetoavoiddoublecountingofemissionreductionsandcorrectlyassesstheGHGintensityofthesyntheticfuel.ThiscannotbesolvedbyLCAmethodology,thereforerequiringpolicyandcommercialagreements.Forinstance,emissionbenefitscouldbesplitbetweentheoriginalCO2emitterandthefuelproducer,atamutuallyagreedshare,possiblyinproportiontorelevantinvestments.Inthelongterm,nouseoffossilCO2feedstockwouldbecompatiblewiththeNZEScenario.

Enhancedstakeholderengagementandinternationalcooperationiskeyforincreasingconsensusoncommoncriteriaforsustainablebiofuels.Thisincludesfurtherstrengtheningcollaborationamonginternationalorganisations,fosteringcooperationwithotherend-usesectors,andencouragingconsistentandtransparentregulationsforcarbonaccountinginArticle6oftheParisAgreement,aswellasinvoluntarycarbonmarkets.TheG20couldalsoestablishavoluntaryexpertgrouptodevelopandtestatieredlabellingsystemforsustainablefuelsinselectedcountries.

TowardsCommonCriteriaforSustainableFuelsChapter1.Introduction

IEA.CCBY4.0.

PAGE|10

Chapter1.Introduction

Atthe28thUnitedNationsClimateChangeConference(COP28)inDubai,governmentsacknowledgedthenecessityforemissionsintheenergysectortoreachnetzeroby2050.Theinterimgoalsfor2030includetriplingglobalrenewableenergycapacityanddoublingtherateofenergyefficiencyimprovements.Othergoalsinvolvetransitioningawayfromfossilfuelsinajust,orderlyandequitablemanner;acceleratingtheuseofemergingtechnologieslikelow-carbonhydrogenandcarboncapture;aswellasafocusonreducingemissionsfromroadtransportthroughinfrastructuredevelopmentandtherapiddeploymentofzeroandlow-emissionvehicles.

Figure1.1

100%

80%

60%

40%

20%

0%

GlobalfinalenergyconsumptionintheNetZeroEmissionsby2050Scenario

442EJ406EJ379EJ360EJ343EJ

20222030203520402050

ElectricityLow-emissionfuelsUnabatedfossilfuelsHeatTraditionaluseofbiomass

IEA.CCBY4.0.

Notes:EJ=Exajoules

UndertheIEA’sNetZeroEmissionsby2050(NZE)Scenario,demandforlow-emissionfuelssuchasliquidbiofuels,biogases,hydrogenandhydrogen-basedfuelswouldneedtodoublefromcurrentlevelsby2030anddoubleagainby2050.Despitetheirhighercostandavailabilitybarriers,low-emissionfuelsplayasignificantroleincleanenergytransitions,servingascriticalcomplementstoenergyefficiencyanddirectelectrification,andcontributingtoenergydiversification

IEA.CCBY4.0.

PAGE|11

andsecurity.Theyfacilitatedecarbonisationacrossarangeofend-usesectors,includingtransport,industryandpowergeneration,whilealsoprovidingseasonalenergystorageandancillarysupporttopowergrids.

Figure1.2Examplesofproductionpathwaysandtechnologiesforsustainablefuels

andpotentialsynergies

IEA.CCBY4.0.

Numerouslow-emissionfueloptionsexist,rangingfromalcohols(e.g.methanol,ethanol)togaseousfuels(e.g.biogases,ammonia)andtoliquidhydrocarbons(e.g.renewablediesel,sustainableaviationfuels).Sametypesoflow-emissionfuelcanbeproducedthroughseveralpathways.Low-emissionhydrogen,forexample,canbeproducedeitherfrombiomass,fromwaterwiththehelpofelectricity(electrolysis)orfromfossilfuelsthroughcarboncaptureutilisationandstorage(CCUS).Somesynergiesalsoexistbetweendifferentpathways.(SeeFig1.2)Forexample,convertinglow-emissionhydrogentosynthetickerosenerequiresalsoCO2feedstock,whichcouldbeobtainedfromabiofuelpathwaythatproduceslargequantitiesofCO2asacoproduct.

Atpresent,noneofthemainsustainablefueloptionsareontrackforanetzeropathway(Fig1.3).Theyalsovarywidelyintermsofcosts,infrastructureneeds,availability,levelofdeploymentandtechnologicalmaturity.

Biofuelsarecurrentlythemostdevelopedandcost-effectivealternativetofossilfuels.However,substantialeffortsareneededtoexpandanddiversifybiomassfeedstocksupplies,commercialisenewprocessingtechnologiesandharmonisesustainabilityframeworkstoaddressconcernsrelatedtolarge-scaledeployment.

IEA.CCBY4.0.

PAGE|12

Interestinlow-emissionhydrogenisdriveninlargepartbyitspotentialasasubstituteforunabatedfossilhydrogeninindustryandbygrowingdemandfornewhydrogenapplications.FallingrenewableenergypricesandtheabilitytoretrofitexistingfossilhydrogenplantswithCCUSalsocontributetoitsappeal.However,low-emissionhydrogenishinderedbyinsufficientdemand-sidepoliciesandasignificantneedtoinvestininfrastructureforitstransport,distributionandstorage.

Figure1.3Totalfinalconsumptionofliquidandgaseouslow-emissionfuelsin2022

andintheStatedPoliciesScenarioandtheNetZeroScenario

IEA.CCBY4.0.

Notes:STEPS=StatedPoliciesScenario.NZE=NetZeroEmissionsby2050Scenario.Fueluseforelectricitygenerationorasafeedstockareexcluded.

Hydrogen-basedfuelssuchasammonia,methanolandsynthetichydrocarbonsaddtothediversityoffueldecarbonisationoptions.Althoughhydrogen-basedfuelstypicallyrequirelessinvestmentinnewdistributioninfrastructurethanhydrogen,theyaremoreexpensivetoproduce.Theirscalabilityisalsoconstrainedbylimitedaccesstolow-cost,low-emissionCO2feedstock(exceptforammonia,whichisacarbon-freemolecule).Hydrogen-basedfuelsalsocompetewithemergingnon-fuelusesforhydrogen,suchastheproductionofdirectreducediron(DRI).

Therearepotentiallyhundredsofpathwaysavailableforproducingfuels,withawiderangeofgreenhousegas(GHG)emissionstoday.However,amajorityofpathwayscanachievebetterandeventuallyverylowemissions.Numerousframeworksandcertificationschemesforsustainablefuelshavebeenestablishedworldwide,creatingconfusionamonginvestors,regulatorsandfuelproducers.Atthesametime,mostcountriesstilllackGHGregulationsforfuels.

TowardsCommonCriteriaforSustainableFuelsChapter1.Introduction

IEA.CCBY4.0.

PAGE|13

Thisreport–producedinsupportofBrazil’sG20Presidency–explorestheimplicationsofsettingupcommoncriteriatoenablefaircomparisonsofsustainablefuelsacrossdifferentregionsandmarkets.Itmapsthecommonalitiesanddifferencesamongcurrentstandards,regulationsandcertificationsusedforlow-emissionfuels.Itreviewstypicalcarbonintensitiesandimprovementpotentialofvariousfuelproductionpathwaysandlaysoutpolicyconsiderationsforgovernmentsthatwishtoworktowardscommoncriteriaforsustainablefuels.Thereportbuildsuponandexpandsonanalysispresentedin

CarbonAccountingfor

SustainableBiofuels

(IEA,2024),

Towardshydrogendefinitionsbasedontheir

emissionsintensity

(IEA,2023),andtheGlobalHydrogenReview2024(IEA,forthcoming).

TowardsCommonCriteriaforSustainableFuelsChapter2.Carbonaccounting:

Standards,regulationsandcertificationsystems

IEA.CCBY4.0.

PAGE|14

Chapter2.Carbon

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論