




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
TowardsCommon
CriteriaforSustainableFuels
>
>
INTERNATIONALENERGY
AGENCY
TheIEAexaminesthefullspectrum
ofenergyissues
includingoil,gasandcoalsupplyand
demand,renewableenergytechnologies,electricitymarkets,energyefficiency,
accesstoenergy,
demandside
managementand
muchmore.Throughitswork,theIEA
advocatespoliciesthatwillenhancethe
reliability,affordabilityandsustainabilityofenergyinits
31membercountries,
13association
countriesandbeyond.
Thispublicationandany
mapincludedhereinare
withoutprejudicetothe
statusoforsovereigntyoveranyterritory,tothe
delimitationofinternationalfrontiersandboundariesandtothenameofanyterritory,cityorarea.
IEAmembercountries:
AustraliaAustria
BelgiumCanada
CzechRepublic
DenmarkEstonia
Finland
France
GermanyGreece
HungaryIreland
Italy
Japan
Korea
Lithuania
LuxembourgMexico
NetherlandsNewZealandNorway
Poland
Portugal
SlovakRepublicSpain
Sweden
Switzerland
RepublicofTürkiyeUnitedKingdom
UnitedStates
TheEuropean
CommissionalsoparticipatesintheworkoftheIEA
IEAassociationcountries:
ArgentinaBrazil
China
Egypt
India
IndonesiaKenya
MoroccoSenegal
Singapore
SouthAfricaThailand
Ukraine
Source:IEA.
InternationalEnergyAgency
Website:
TowardsCommonCriteriaforSustainableFuelsAbstract
IEA.CCBY4.0.
PAGE|3
Abstract
Sustainablefuelsplayacrucialroleincleanenergytransitions.Theycomplementdirectelectrificationandenergyefficiencymeasuresindecarbonisingsectorsforwhichemissionsarehardtoabate,whilecontributingtoenergydiversificationandsecurity.UndertheIEA’sNetZeroEmissionsby2050(NZE)Scenario,thedemandforlow-emissionfuelssuchasliquidbiofuels,biogases,hydrogenandhydrogen-basedfuelswouldneedtodoublefromcurrentlevelsby2030anddoubleagainby2050.Despitetheirimportance,noneofthemainsustainablefueloptionsareontrackforanetzeropathway.
Accelerateddeploymentofsustainablefuelsdependsinpartonachievingacommonunderstandingofwhatmakesafuel“sustainable”.Numerousframeworksandcertificationschemesforsustainablefuelshavebeenestablishedworldwide.Termssuchas“green,”“blue,”or“advanced”arefrequentlyusedtodescribethesustainabilityfeaturesoffuelsandtodifferentiatethemfromtheirunabatedfossilcounterparts.However,thereisnointernationalconsensusonthemeaningoftheseterms.Theirdefinitionsareinconsistentand,critically,theydonotusuallyprovidequantitativeinformationaboutgreenhousegasemissions.
Thisreport–producedinsupportofBrazil’sG20Presidency–exploresthefeasibilityandimplicationsofsettingupcommoncriteriatoenablefaircomparisonsofsustainablefuels.Itmapscommonalitiesanddifferencesamongthestandards,regulationsandcertificationsusedforsustainablefuelsacrossdifferentregionsandmarkets.Itreviewstypicalcarbonintensitiesandtheimprovementpotentialofvariousfuelproductionpathwaysandsetsoutpolicyconsiderationsforgovernmentsthatwishtoworktowardcommoncriteriaforsustainablefuels.
TowardsCommonCriteriaforSustainableFuelsAcknowledgements
IEA.CCBY4.0.
PAGE|4
Acknowledgements,contributorsandcredits
ThisreportwaspreparedjointlybytheRenewableEnergyDivisionandtheEnergyTechnologyPolicyDivisionoftheInternationalEnergyAgency.ThestudywasdesignedanddirectedbyPaoloFrankl,HeadoftheRenewableEnergyDivision.
SeniorEnergyAnalystIlkkaHannulawastheleadauthorofthereportandcoordinateditsproduction.Otherauthorswere(inalphabeticalorder)AnaAlcalde,JoseBermudez-Menendez,HeribBlancoandPaoloFrankl.
ThereportbuildsuponandexpandsonanalysispresentedinthereportsCarbonAccountingforSustainableBiofuels(IEA,2024)andTowardshydrogendefinitionsbasedontheiremissionsintensity(IEA,2023),aswellastheGlobalHydrogenReview2024(IEA,forthcoming).
ValuablecommentsandfeedbackwereprovidedbyseniormanagementandcolleagueswithintheIEA,includingKeisukeSadamori,TimurGül,andUweRemme.
TheCommunicationsandDigitalOfficeprovidedproductionsupport.ParticularthanksgotoJethroMullenandhisteam:AstridDumond,LivGaunt,ClaraVallois,LorenzoSquillaceandPoeliBojorquez.NicolaClarkeditedthereport.
ManyexpertsfromoutsideoftheIEAprovidedvaluableinput,commentedandreviewedthisreport.Theyinclude:
Countries
Brazil(MarianadeAssisEspécie,DirectorofEnergyTransitionattheBrazilianMinistryofMinesandEnergyandLaísdeSouzaGarcia,HeadoftheRenewableEnergyDivision–MinistryofExternalRelations);Germany(FederalMinistryforEconomicAffairsandClimateAction);Japan(MrTakashiHasegawa,FuelSupplyInfrastructurePolicyDivision,MinistryofEconomy,TradeandIndustry);UnitedKingdom(HMTreasury,DepartmentforEnergySecurityandNetZero).
Organisations
Catavento(ClarissaLins,BrunaMascotteandTamaraFain),H2Global(FlorianGeyer),HydrogenCouncil(DariaNochevnikandAndreiTchouvelev),IPHE(LaurentAntoniandNoévanHulst),PolytechnicUniversityofTurin(DavidChiaramontiandMatteoPrussi),Raízen(SimonePereiradeSouza).
TowardsCommonCriteriaforSustainableFuelsExecutivesummary
IEA.CCBY
PAGE|5
Executivesummary
Sustainablefuelsplayacrucialroleincleanenergytransitions
Sustainablefuelscomplementdirectelectrificationandenergyefficiencymeasuresindecarbonisingsectorsforwhichemissionsarehardtoabate.
UndertheIEA’sNetZeroEmissionsby2050(NZE)Scenario,thedemandforlow-emissionfuelssuchasliquidbiofuels,biogases,hydrogenandhydrogen-basedfuelswouldneedtodoublefromcurrentlevelsby2030anddoubleagainby2050.Theyfacilitatedecarbonisationacrossarangeofend-usesectors,especiallypartsoftransportandindustry,whilecontributingtoenergydiversificationandsecurity.
Noneofthemainsustainablefueloptionsareontrackforanetzeropathway.
Therearepotentiallyhundredsofpathwaysavailableforproducingfuels.Biofuelsarecurrentlythemostdevelopedandcost-effectivealternativetofossilfuels.However,substantialeffortsareneededtoexpandanddiversifysustainablebiomassfeedstocksupplies,commercialisenewprocessingtechnologiesandharmonisesustainabilityframeworkstoaddressconcernsrelatedtolarge-scaledeployment.Hydrogenhassignificantindustrialdemandtoday,butsupplyoflow-emissionhydrogenisverylimitedsofar.Inadditiontoscalinguplow-emissionproductionandreducingcost,significantinvestmentsindistributioninfrastructureandend-useequipmentareneeded.Hydrogen-basedlow-emissionfuelstypicallyoffersomebenefitsintermsoflowerinfrastructurerequirementscomparedtopurehydrogen,buttheyaremoreexpensivetoproduce,andtheirscale-upisfurtherlimitedbyaccesstolow-cost,low-emissionsourcesofCO?feedstock(exceptforammoniawhichiscarbon-free).
Accelerateddeploymentofsustainablefuelsdependsinpartonachievingacommonunderstandingofwhatmakesafuel“sustainable”.Numerousframeworksandcertificationschemesforsustainablefuelshavebeenestablishedworldwide.Termssuchas“green,”“blue,”or“advanced”arefrequentlyusedtodescribethesustainabilityfeaturesoffuelsandtodifferentiatethemfromtheirunabatedfossilcounterparts.However,thereisnointernationalconsensusonthemeaningoftheseterms.Theirdefinitionsareinconsistentand,critically,theydonotusuallyprovidequantitativeinformationaboutGHGemissions.
4.0.
Thisreport–producedinsupportofBrazil’sG20Presidency–exploresthefeasibilityandimplicationsofsettingupcommoncriteriatoenablefaircomparisonsofsustainablefuels.Itmapscommonalitiesanddifferencesamongthestandards,regulationsandcertificationsusedforsustainablefuelsacrossdifferentregionsandmarkets.Itreviewstypicalcarbonintensitiesandthe
IEA.CCBY4.0.
PAGE|6
improvementpotentialofvariousfuelproductionpathwaysandsetsoutpolicyconsiderationsforgovernmentsthatwishtoworktowardcommoncriteriaforsustainablefuels.ThereportbuildsuponandexpandsonanalysispresentedinthereportsCarbonAccountingforSustainableBiofuels(IEA,2024)andTowardshydrogendefinitionsbasedontheiremissionsintensity(IEA,2023),aswellastheGlobalHydrogenReview2024(IEA,forthcoming).
SupplychainGHGintensityprovidesarobustbasisforafairandtransparentcomparison
Manystandards,regulationsandcertificationsareinusetodayforsustainablefuelswithsomecommonalities,buttherearealsoimportantdifferences.Generally,GHGaccountingishandledsimilarlyacrossthemainbiofuelpolicyframeworks,withthenotableexceptionofland-usechange.TheGHGintensitiescanvarywidelyamongsimilarbiofuelproductionpathways,butmethodologiesfortheirassessmentarerobust,andcausesfordifferencesarewellunderstood.Theytypicallyrelatetoregionaldifferences,methodologicalchoices,anddatainputqualityandrepresentativeness.Incontrast,impactsofland-usechangeareamajorsourceofdisagreementacrossdifferentbiofuelpolicyframeworks.Forhydrogenand/orhydrogenderivatives,therearecurrently34certificationschemes.MorethanhalfoftheseschemesrequireaGHGintensityoflessthan33gCO?-eq/MJ(4kgCO?-eq/kgH2),aroundtwo-thirdslowerthanemissionsofproductionfromunabatednaturalgas,themostcommonproductionpathwaytoday.However,mostschemesconsideronlyemissionsfromproductionanddonotincludetransportanddistributionofthefinalfuelintheirscope.
Foraconsistentcomparisonacrossfuels,supplychainGHGintensityshouldbecalculatedatthepointofdeliveryandincludecompleteoxidationofthefuel.GHGintensity(expressedingCO?-eq/MJ)shouldconsidernotonlyproduction,butalsoemissionsrelatedtotransportanddistributiontothepointofdelivery,sincethesestepscanaddsignificantlytosupplychainemissionsforcertainfuels(e.g.hydrogen).GHGintensitycalculationsshouldalsoassumecompleteoxidationofthefueltoaccountforanyfossilcarboninputsthatareusedduringtheproductionprocess–e.g.forfuelssuchassyntheticmethanolorkerosene.Inthecaseoffuelsproducedviaelectrolysis,embodiedGHGemissionsfromthemanufactureofcaptivepowerplants(e.g.renewableornuclear)shouldalsobeincludedwithinthesystemboundary.Forbiofuels,directland-usechangeemissionsshouldbeincludedintheGHGmetrics,astheyaremeasurableandverifiableovertime.Indirectland-usechangeshouldbetreatedseparately(seebelow).
MinimumrequirementsforemissionsreductioncomparedtounabatedfossilfuelscanbesetbyestablishingaGHGintensitythreshold.Suchathresholdshouldbesetlowenoughtotriggerambitiousemissionreductions.Atthesame
IEA.CCBY4.0.
PAGE|7
time,itshouldalsobeabletoensurethatabroadrangeoftechnologiesandemergingpathwayswithloweremissionsthanunabatedfossilfuelscanplayaroleintheearlyphasesofthetransition,attractinvestmentandbenefitfromlearningatrelevantscales.Thisisespeciallyrelevantincountriesthatcannotaffordtogodirectlytonear-zero-emissionfuels.Asmuchofthesustainablefuelsectorisstillnascent,settingextremelylowthresholdsattheoutsetcanhindertechnologicaldevelopment,increasecostsandultimatelyslowprogressinreducingglobalaveragefuelemissions.Inmanycases,aphasedapproachtowardsambitiousthresholdscanbedesirable.
GHGintensityshouldbecomplementedbyabroaderportfolioofpoliciescoveringnon-GHGimpactsoffuels.LifecycleGHGemissionsarejustoneofmanysustainabilityfactorstoconsiderwhenexpandingtheproductionanduseoflow-emissionfuels.Agrowingnumberofpoliciesarealsoaddressingissueslikefoodandwatersecurity,biodiversityandothersocioeconomicfactors,suchasensuringasecureandaffordableenergysupplyandsupportingajusttransition.
PoliciesshouldrewardbetterGHGperformanceanddrivecontinuousimprovementovertime
SeveralmeasurescanbeappliedtoimproveGHGperformanceoffuels,butincentivesarerequiredtocoverextracosts.FuelpathwaysshowawiderangeofGHGintensities,butmeasureslikeadoptingsustainablefarmingpractices,usingcarboncaptureutilisationandstorage(CCUS),switchingtorenewableenergyforprocessing,andpoweringelectrolyserswithdedicatedlow-emissionenergy,canleadtosignificantimprovementsalreadytoday.AllfuelpathwayscanachievelowGHGintensitiesovertime,butmeasurestoreduceemissionsarelikelytoincreasecosts,requiringmarketandpolicyframeworksthatincentivisefuelpathwayswithsuperiorGHGperformance,supportedbymeasurableandverifiablelifecycledata.
AtieredGHGlabellingsystemforfuelsallowstodefineaminimumrequirement,identifyandrewardbetterperformance,anddrivecontinuousimprovement.AlabellingsystemthatgroupssupplychainGHGintensities(gCO?-eq/MJ)intoasmallsetofdistinctlevelsoffersarobustandtransparentwayofcommunicatingthesustainabilityoffuelstoinvestors,policymakersandend-users.Basedonconsistentmethodologiesithelpsthemutualrecognitionofexistingschemesandfostersregulatoryinteroperability.Itenablespoliciestoidentifyandrewardbetterperformance,bothtodayandovertime,whilestillallowingaportfoliooflower-GHGfuelstocontributetodecarbonisationintheearlyphaseofthetransition.Technologiestendtoimproveastheyscaleupandcompeteinthemarkets,makingitimportanttofocusonpotentialfutureGHGintensitylevelsratherthancurrentones(seearrowsinthefigurebelow).Thethresholdandtierscouldberevisedatcertainintervals(e.g.every5years)tobecomemorestringent,inlinewiththegradualtransitionoftheglobalenergysystemtowardsnetzeroemissionsby2050.
TowardsCommonCriteriaforSustainableFuelsExecutivesummary
IEA.CCBY4.0.
PAGE|8
ExampleofaquantitativeGHGintensitylabellingsystemforselectedsustainablefuelpathways
IEA.CCBY4.0.
Note:Forassumptionsanddefinitions,seeFigure4.1.
Commonpoliciesandinternationalcollaborationarekeytoattractinvestment
Theabsenceofunifiedpolicyapproachestoaccountforpathway-specificfactorscandeterinvestmentand,ultimately,slowdowntheenergytransition.
Certainemissiondriversandsustainabilityattributesareuniquetospecificfuelpathwaysandcannotbesolvedwithinlifecycleassessment(LCA)andintegratedintheproposedGHGlabellingscheme.Examplesofsuchpathway-specificsustainabilityaspectsincludeindirectland-usechangeforbiofuels,additionalrequirementsfortheelectricityusedforhydrogenproducedfromrenewables,andthesourceofCO2andallocationofbenefitsforhydrogen-basedfuels.Pragmaticpolicysolutionsareneededtopreventthemfrombecominganobstacleforthedeploymentofsustainablefuels.
Indirectland-usechange(iLUC)concernsshouldbeaddressedbyadoptingrisk-basedapproachesintheneartermandstrivingtodevelopgloballand-usepoliciesovertime.AlthoughpotentialiLUCimpactscanbesignificant,theycannotbedirectlymeasuredorverified,onlymodelled.RatherthantryingtocalculateindirectemissionsintermsofgCO2-eq/MJforagivenbiofuelpathway,alternativemethodsshouldbeapplied.Intheshortterm,qualitativerisk-basedapproachesthatensurecompliancewithlow-iLUC-riskrequirementscanaddresspotentialimpactsandencourageimprovements.Overthelongterm,policiesshouldshiftfrommodellingimpactstoenforcingdirectland-useregulationsgloballyandpromotingbetteragriculturallandmanagementpractices.Inemergencies,suchas
TowardsCommonCriteriaforSustainableFuelsExecutivesummary
IEA.CCBY4.0.
PAGE|9
economiccrises,geopoliticaleventsorextremeweatherconditions,governmentsshouldconsidertemporarymeasurestoaddressfoodsecurityconcerns.Biofuelpoliciesshouldbedesignedtobeflexibleduringperiodsoftightnessinglobalagriculturalmarketstoavoidamplifyingorprolongingpricespikes.
Extrarequirementsforelectricityusedtoproduceelectrolytichydrogen,suchasadditionality,temporalandspatialcorrelation,shouldbeappliedthoughtfully.Toaddresspotentialindirectsystemimpacts,somejurisdictionsareplacingextrarequirementsbeyondtheGHGintensityofthepowergridmix,suchasadditionalityandtemporalandspatialcorrelationfortherenewableelectricityusedforhydrogenproduction.However,powersystemsaredecarbonisingrapidlyworldwide,independentofhydrogendeployment.Settingverystrictcriteriaduringtheearlystagesoftechnologyscale-uprisksdelayinginvestments,impedingthedevelopmentofsupplychainsandinfrastructure,andhinderingpotentialbenefitsintermsofcreatingnewelectricitydemandandnewflexibilityresourcesforintegratingvariablerenewables.Inthelongterm,possibleindirectsystemimpactswillfadeastheroleoffossilfuelsinpowersystemsdiminishes.UndertheNZEScenario,powersystemswouldbefullydecarbonisedgloballybefore2045.
ThecaptureanduseoffossilCO2fromexistingindustrialsourcescouldtemporarilyfacilitateproductionofloweremissionhydrogen-basedfuels,asCO2supplyfrombiogenicsourcesanddirectaircapturegrowsovertime.TheCO2thatisusedtoproducehydrogen-basedfuelsisultimatelyreleasedbackintotheatmosphere,andthereforeitisimportanttoconsiderthesourceofCO2feedstock.Thebiogenicordirectair-capturedCO2componentiscarbon-neutralwhenthefuelisburned.Incontrast,iffossilCO2capturedfromexistingindustrialprocessesisusedasfeedstock,system-levelemissionsareonlypartiallyreduced.Theopportunityliesinthepossibilitytohelpjumpstartthisnewindustryandrelevantsupplychains,whileachievinginitialemissionreductions.However,robust,transparentandmutuallyagreedemissionsallocationmethodsneedtobeinplacetoavoiddoublecountingofemissionreductionsandcorrectlyassesstheGHGintensityofthesyntheticfuel.ThiscannotbesolvedbyLCAmethodology,thereforerequiringpolicyandcommercialagreements.Forinstance,emissionbenefitscouldbesplitbetweentheoriginalCO2emitterandthefuelproducer,atamutuallyagreedshare,possiblyinproportiontorelevantinvestments.Inthelongterm,nouseoffossilCO2feedstockwouldbecompatiblewiththeNZEScenario.
Enhancedstakeholderengagementandinternationalcooperationiskeyforincreasingconsensusoncommoncriteriaforsustainablebiofuels.Thisincludesfurtherstrengtheningcollaborationamonginternationalorganisations,fosteringcooperationwithotherend-usesectors,andencouragingconsistentandtransparentregulationsforcarbonaccountinginArticle6oftheParisAgreement,aswellasinvoluntarycarbonmarkets.TheG20couldalsoestablishavoluntaryexpertgrouptodevelopandtestatieredlabellingsystemforsustainablefuelsinselectedcountries.
TowardsCommonCriteriaforSustainableFuelsChapter1.Introduction
IEA.CCBY4.0.
PAGE|10
Chapter1.Introduction
Atthe28thUnitedNationsClimateChangeConference(COP28)inDubai,governmentsacknowledgedthenecessityforemissionsintheenergysectortoreachnetzeroby2050.Theinterimgoalsfor2030includetriplingglobalrenewableenergycapacityanddoublingtherateofenergyefficiencyimprovements.Othergoalsinvolvetransitioningawayfromfossilfuelsinajust,orderlyandequitablemanner;acceleratingtheuseofemergingtechnologieslikelow-carbonhydrogenandcarboncapture;aswellasafocusonreducingemissionsfromroadtransportthroughinfrastructuredevelopmentandtherapiddeploymentofzeroandlow-emissionvehicles.
Figure1.1
100%
80%
60%
40%
20%
0%
GlobalfinalenergyconsumptionintheNetZeroEmissionsby2050Scenario
442EJ406EJ379EJ360EJ343EJ
20222030203520402050
ElectricityLow-emissionfuelsUnabatedfossilfuelsHeatTraditionaluseofbiomass
IEA.CCBY4.0.
Notes:EJ=Exajoules
UndertheIEA’sNetZeroEmissionsby2050(NZE)Scenario,demandforlow-emissionfuelssuchasliquidbiofuels,biogases,hydrogenandhydrogen-basedfuelswouldneedtodoublefromcurrentlevelsby2030anddoubleagainby2050.Despitetheirhighercostandavailabilitybarriers,low-emissionfuelsplayasignificantroleincleanenergytransitions,servingascriticalcomplementstoenergyefficiencyanddirectelectrification,andcontributingtoenergydiversification
IEA.CCBY4.0.
PAGE|11
andsecurity.Theyfacilitatedecarbonisationacrossarangeofend-usesectors,includingtransport,industryandpowergeneration,whilealsoprovidingseasonalenergystorageandancillarysupporttopowergrids.
Figure1.2Examplesofproductionpathwaysandtechnologiesforsustainablefuels
andpotentialsynergies
IEA.CCBY4.0.
Numerouslow-emissionfueloptionsexist,rangingfromalcohols(e.g.methanol,ethanol)togaseousfuels(e.g.biogases,ammonia)andtoliquidhydrocarbons(e.g.renewablediesel,sustainableaviationfuels).Sametypesoflow-emissionfuelcanbeproducedthroughseveralpathways.Low-emissionhydrogen,forexample,canbeproducedeitherfrombiomass,fromwaterwiththehelpofelectricity(electrolysis)orfromfossilfuelsthroughcarboncaptureutilisationandstorage(CCUS).Somesynergiesalsoexistbetweendifferentpathways.(SeeFig1.2)Forexample,convertinglow-emissionhydrogentosynthetickerosenerequiresalsoCO2feedstock,whichcouldbeobtainedfromabiofuelpathwaythatproduceslargequantitiesofCO2asacoproduct.
Atpresent,noneofthemainsustainablefueloptionsareontrackforanetzeropathway(Fig1.3).Theyalsovarywidelyintermsofcosts,infrastructureneeds,availability,levelofdeploymentandtechnologicalmaturity.
Biofuelsarecurrentlythemostdevelopedandcost-effectivealternativetofossilfuels.However,substantialeffortsareneededtoexpandanddiversifybiomassfeedstocksupplies,commercialisenewprocessingtechnologiesandharmonisesustainabilityframeworkstoaddressconcernsrelatedtolarge-scaledeployment.
IEA.CCBY4.0.
PAGE|12
Interestinlow-emissionhydrogenisdriveninlargepartbyitspotentialasasubstituteforunabatedfossilhydrogeninindustryandbygrowingdemandfornewhydrogenapplications.FallingrenewableenergypricesandtheabilitytoretrofitexistingfossilhydrogenplantswithCCUSalsocontributetoitsappeal.However,low-emissionhydrogenishinderedbyinsufficientdemand-sidepoliciesandasignificantneedtoinvestininfrastructureforitstransport,distributionandstorage.
Figure1.3Totalfinalconsumptionofliquidandgaseouslow-emissionfuelsin2022
andintheStatedPoliciesScenarioandtheNetZeroScenario
IEA.CCBY4.0.
Notes:STEPS=StatedPoliciesScenario.NZE=NetZeroEmissionsby2050Scenario.Fueluseforelectricitygenerationorasafeedstockareexcluded.
Hydrogen-basedfuelssuchasammonia,methanolandsynthetichydrocarbonsaddtothediversityoffueldecarbonisationoptions.Althoughhydrogen-basedfuelstypicallyrequirelessinvestmentinnewdistributioninfrastructurethanhydrogen,theyaremoreexpensivetoproduce.Theirscalabilityisalsoconstrainedbylimitedaccesstolow-cost,low-emissionCO2feedstock(exceptforammonia,whichisacarbon-freemolecule).Hydrogen-basedfuelsalsocompetewithemergingnon-fuelusesforhydrogen,suchastheproductionofdirectreducediron(DRI).
Therearepotentiallyhundredsofpathwaysavailableforproducingfuels,withawiderangeofgreenhousegas(GHG)emissionstoday.However,amajorityofpathwayscanachievebetterandeventuallyverylowemissions.Numerousframeworksandcertificationschemesforsustainablefuelshavebeenestablishedworldwide,creatingconfusionamonginvestors,regulatorsandfuelproducers.Atthesametime,mostcountriesstilllackGHGregulationsforfuels.
TowardsCommonCriteriaforSustainableFuelsChapter1.Introduction
IEA.CCBY4.0.
PAGE|13
Thisreport–producedinsupportofBrazil’sG20Presidency–explorestheimplicationsofsettingupcommoncriteriatoenablefaircomparisonsofsustainablefuelsacrossdifferentregionsandmarkets.Itmapsthecommonalitiesanddifferencesamongcurrentstandards,regulationsandcertificationsusedforlow-emissionfuels.Itreviewstypicalcarbonintensitiesandimprovementpotentialofvariousfuelproductionpathwaysandlaysoutpolicyconsiderationsforgovernmentsthatwishtoworktowardscommoncriteriaforsustainablefuels.Thereportbuildsuponandexpandsonanalysispresentedin
CarbonAccountingfor
SustainableBiofuels
(IEA,2024),
Towardshydrogendefinitionsbasedontheir
emissionsintensity
(IEA,2023),andtheGlobalHydrogenReview2024(IEA,forthcoming).
TowardsCommonCriteriaforSustainableFuelsChapter2.Carbonaccounting:
Standards,regulationsandcertificationsystems
IEA.CCBY4.0.
PAGE|14
Chapter2.Carbon
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐廳壁畫施工方案
- 水網(wǎng)地段管道施工方案
- 壁畫終端箱施工方案
- 2025年SYB創(chuàng)業(yè)培訓(xùn)后的試題及答案
- 6年級上冊語文第十八課筆記
- 某航天機(jī)械能源公司投標(biāo)書
- 2025年醫(yī)學(xué)經(jīng)典考試題及答案
- 地災(zāi)隱患點搬遷實施方案
- 2025年中山火炬職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫附答案
- 2025年甘肅省慶陽地區(qū)單招職業(yè)適應(yīng)性測試題庫一套
- 《小學(xué)信息技術(shù)》完整版教學(xué)課件PPT
- 市政基礎(chǔ)設(shè)施綠化工程移交書
- GB/T 30133-2022一次性衛(wèi)生用品用面層
- GB/T 20878-2007不銹鋼和耐熱鋼牌號及化學(xué)成分
- 部編版小學(xué)語文三年級下冊書法教案設(shè)計(全冊)
- 胎動不安課件
- 雙重預(yù)防體系建設(shè)全套文件非煤礦山
- 文件袋、檔案袋密封條模板
- 皮內(nèi)注射技術(shù)操作考核評分標(biāo)準(zhǔn)
- 加油站重大風(fēng)險清單
- 大唐大慈恩寺三藏法師傳白話本(整理壓縮版)
評論
0/150
提交評論