版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東省濱州市三校聯(lián)考2025屆數(shù)學(xué)高二上期末檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角是()A. B.C. D.2.在棱長為1的正四面體中,點滿足,點滿足,當(dāng)和的長度都為最短時,的值是()A. B.C. D.3.在等比數(shù)列中,,,則等于()A. B.5C. D.94.已知角為第二象限角,,則的值為()A. B.C. D.5.已知空間向量,,,則()A.4 B.-4C.0 D.26.將函數(shù)的圖象向左平移個單位長度后,得到函數(shù)的圖象,則()A. B.C. D.7.已知,為正實數(shù),且,則的最小值為()A. B.C. D.18.下列命題中正確的是A.命題“若,則”的否命題為:“若,則”B.若命題,是假命題,則實數(shù)C.“”的一個充分不必要條件是“”D.命題“若,則”的逆否命題為真命題9.已知向量,,且,則實數(shù)等于()A1 B.2C. D.10.已知,則點到平面的距離為()A. B.C. D.11.已知直線與圓相切,則的值是()A. B.C. D.12.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的離心率是______14.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______15.設(shè)函數(shù)是函數(shù)的導(dǎo)函數(shù),已知,且,則使得成立的x的取值范圍是_________.16.已知橢圓的右焦點為,短軸的一個端點為,直線交橢圓于兩點.若,點到直線的距離不小于,則橢圓的離心率的取值范圍是______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是公比不為1的等比數(shù)列,,且為的等差中項.(1)求的公比;(2)求的通項公式及前n項和.18.(12分)如圖所示,在四棱錐中,BC//平面PAD,,E是PD的中點(1)求證:CE//平面PAB;(2)若M是線段CE上一動點,則線段AD上是否存在點,使MN//平面PAB?說明理由19.(12分)已知拋物線的焦點F,C上一點到焦點的距離為5(1)求C的方程;(2)過F作直線l,交C于A,B兩點,若線段AB中點的縱坐標(biāo)為-1,求直線l的方程20.(12分)已知命題:,在下面①②中任選一個作為:,使為真命題,求出實數(shù)a取值范圍.①關(guān)于x的方程有兩個不等正根;②.(若選①、選②都給出解答,只按第一個解答計分.)21.(12分)已知復(fù)數(shù),其中i是虛數(shù)單位,m為實數(shù)(1)當(dāng)復(fù)數(shù)z為純虛數(shù)時,求m的值;(2)當(dāng)復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第三象限時,求m的取值范圍22.(10分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將直線方程化為斜截式,由此確定斜率;根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】設(shè)直線的傾斜角為,則,由得:,則斜率,.故選:A.2、A【解析】根據(jù)給定條件確定點M,N的位置,再借助空間向量數(shù)量積計算作答.【詳解】因,則,即,而,則共面,點M在平面內(nèi),又,即,于是得點N在直線上,棱長為1的正四面體中,當(dāng)長最短時,點M是點A在平面上的射影,即正的中心,因此,,當(dāng)長最短時,點N是點D在直線AC上的射影,即正邊AC的中點,,而,,所以.故選:A3、D【解析】由等比數(shù)列的項求公比,進(jìn)而求即可.【詳解】由題設(shè),,∴故選:D4、C【解析】由同角三角函數(shù)關(guān)系可得,進(jìn)而直接利用兩角和的余弦展開求解即可.【詳解】∵,是第二象限角,∴,∴.故選:C.5、A【解析】根據(jù)空間向量平行求出x,y,進(jìn)而求得答案.【詳解】因為,所以存在實數(shù),使得,則.故選:A.6、A【解析】先化簡函數(shù)表達(dá)式,然后再平移即可.【詳解】函數(shù)的圖象向左平移個單位長度后,得到的圖象.故選:A7、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時等號成立,故的最小值為1,故選:D.8、C【解析】.命題的否定是同時否定條件和結(jié)論;.將當(dāng)成真命題解出的范圍,再取補(bǔ)集即可;.求出“”的充要條件再判斷即可;.判斷原命題的真假即可【詳解】解:對于A:命題“若,則”的否命題為:“若,則“,故A錯誤;對于B:當(dāng)命題,是真命題時,,所以,又因為命題為假命題,所以,故B錯誤;對于C:由“”解得:,故“”是“”的充分不必要條件,故C正確;對于D:因為命題“若,則”是假命題,所以其逆否命題也是假命題,故D錯誤;故選:C9、C【解析】利用空間向量垂直的坐標(biāo)表示計算即可得解【詳解】因向量,,且,則,解得,所以實數(shù)等于.故選:C10、A【解析】根據(jù)給定條件求出平面的法向量,再利用空間向量求出點到平面的距離.【詳解】依題意,,設(shè)平面的法向量,則,令,得,則點到平面的距離為,所以點到平面的距離為.故選:A11、D【解析】直線與圓相切,直接通過求解即可.【詳解】因為直線與圓相切,所以圓心到直線的距離,所以,.故選:D12、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當(dāng)直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當(dāng)直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.14、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:215、【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)研究單調(diào)性,即可得到答案;【詳解】,令,,單調(diào)遞減,且,,x的取值范圍是,故答案為:16、【解析】設(shè)左焦點為,連接,.則四邊形是平行四邊形,可得.設(shè),由點M到直線l的距離不小于,即有,解得.再利用離心率計算公式即可得出范圍【詳解】設(shè)左焦點為,連接,.則四邊形是平行四邊形,故,所以,所以,設(shè),則,故,從而,,,所以,即橢圓的離心率的取值范圍是【點睛】本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、點到直線的距離公式、不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),【解析】(1)設(shè)數(shù)列公比為,根據(jù)列出方程,即可求解;(2):由(1)得到,利用等比數(shù)列的求和公式,即可求解.【小問1詳解】解:設(shè)數(shù)列公比為,因為為的等差中項,可得,即,即,解得或(舍去),所以等比數(shù)列的公比為.【小問2詳解】解:由(1)知且,可得,所以.18、(1)證明見解析;(2)存在,理由見解析.【解析】(1)為中點,連接,由中位線、線面平行的性質(zhì)可得四邊形為平行四邊形,再根據(jù)線面平行的判定即可證結(jié)論;(2)取中點N,連接,,根據(jù)線面、面面平行的性質(zhì)定理和判斷定理即可判斷存在性【小問1詳解】如下圖,若為中點,連接,由E是PD的中點,所以且,又BC//平面PAD,面,且面面,所以,且,所以四邊形為平行四邊形,故,而面,面,則面.小問2詳解】取中點N,連接,,∵E,N分別為,的中點,∴,∵平面,平面,∴平面,線段存在點N,使得平面,理由如下:由(1)知:平面,又,∴平面平面,又M是上的動點,平面,∴平面PAB,∴線段存在點N,使得MN∥平面19、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理可得,由中點公式有,進(jìn)而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準(zhǔn)線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點的縱坐標(biāo)為-1,∴,即,得,∴直線l的方程為.【點睛】關(guān)鍵點點睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點坐標(biāo)值,應(yīng)用韋達(dá)定理、中點公式求直線斜率,并寫出直線方程.20、答案見解析【解析】根據(jù)題意,分析、為真時的取值范圍,又由復(fù)合命題真假的判斷方法可得、都是真命題,據(jù)此分析可得答案.【詳解】解:選①時由知在上恒成立,∴,即又由q:關(guān)于x的方程有兩個不等正根,知解得,由為真命題知,解得.實數(shù)a的取值范圍.選②時由知在上恒成立,∴,即又由,知在上恒成立,∴,又,當(dāng)且僅當(dāng)時取“=”號,∴,由為真命題知,解得.實數(shù)a的取值范圍.21、(1)4(2)【解析】(1)根據(jù)純虛數(shù),實部為零,虛部不為零列式即可;(2)根據(jù)第三象限,實部小于零,虛部小于零,列式即可.【小問1詳解】因為為純虛數(shù),所以解得或,且且綜上可得,當(dāng)為純虛數(shù)時;【小問2詳解】因為在復(fù)平面內(nèi)對應(yīng)的點位于第三象限,解得或,且即,故的取值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025建筑施工合同風(fēng)險的分析和對策
- 2025合同模板舞臺設(shè)備租賃合同范文范本
- 2025人民防空工程租賃使用合同示范
- 詩歌創(chuàng)作的靈感挖掘與表達(dá)技巧
- 民族藥理學(xué)視角下的少數(shù)民族醫(yī)藥研究進(jìn)展
- 2024年留置針項目資金申請報告
- 科技賦能現(xiàn)代小區(qū)的智能安防系統(tǒng)設(shè)計與應(yīng)用研究
- 游泳教育中的法律責(zé)任與風(fēng)險控制
- 3D打印行業(yè)報告:消費(fèi)電子鈦浪起3D打印黎明至
- 二零二五年度物聯(lián)網(wǎng)大數(shù)據(jù)通信接入合同3篇
- 2024年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年參考題庫含答案解析
- 2024年國家工作人員學(xué)法用法考試題庫及參考答案
- 國家公務(wù)員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術(shù)》課件 第6講 阻燃纖維及織物
- 同等學(xué)力英語申碩考試詞匯(第六版大綱)電子版
- 人教版五年級上冊遞等式計算100道及答案
- 墓地個人協(xié)議合同模板
- 2024年部編版初中語文各年級教師用書七年級(上冊)
- 2024年新課標(biāo)全國Ⅰ卷語文高考真題試卷(含答案)
- 湖南省退休人員節(jié)日慰問政策
- QB/T 5998-2024 寵物尿墊(褲)(正式版)
評論
0/150
提交評論