版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省楚雄州大姚縣第一中學2025屆數(shù)學高二上期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.2.函數(shù)的極大值點為()A. B.C. D.不存在3.在直三棱柱中,底面是等腰直角三角形,,則與平面所成角的正弦值為()A. B.C. D.4.已知實數(shù),滿足不等式組,若,則的最小值為()A. B.C. D.5.若方程表示雙曲線,則此雙曲線的虛軸長等于()A. B.C. D.6.觀察:則第行的值為()A. B.C. D.7.數(shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.288.在數(shù)列中,,則()A. B.C.2 D.19.“1<x<2”是“x<2”成立的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數(shù)列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺11.已知點是橢圓上一點,點,則的最小值為A. B.C. D.12.已知是兩條不同的直線,是兩個不同的平面,則下列結(jié)論正確的是()A.若,則 B.若,則C若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的左焦點為,M為橢圓上的一點,N是的中點,O為原點,若,則______14.復(fù)數(shù)的共軛復(fù)數(shù)是__________15.下列命題:①若,則;②“在中,若,則”逆命題是真命題;③命題“,”的否定是“,”;④“若,則”的否命題為“若,則”.則其中正確的是______.16.過拋物線:的焦點的直線交于,兩點,若,則線段中點的橫坐標為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求適合下列條件的曲線的標準方程:(1),焦點在軸上的雙曲線的標準方程;(2)焦點在軸上,且焦點到準線的距離是2的拋物線的標準方程18.(12分)已知橢圓的短軸長是2,且離心率為(1)求橢圓E的方程;(2)已知,若直線與橢圓E相交于A,B兩點,線段AB的中點為M,是否存在常數(shù),使恒成立,并說明理由19.(12分)平面直角坐標系中,曲線與坐標軸交點都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點,在圓上是否存在一點,使得四邊形為菱形?若存在,求出此時直線的方程;若不存在,說明理由.20.(12分)為了了解高二段1000名學生一周課外活動情況,隨機抽取了若干學生的一周課外活動時間,時間全部介于10分鐘與110分鐘之間,將課外活動時間按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右前3個組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8(1)求第一組數(shù)據(jù)的頻率并計算調(diào)查中隨機抽取了多少名學生的一周課外活動時間;(2)求這組數(shù)據(jù)的平均數(shù)21.(12分)在中,內(nèi)角所對的邊長分別為,是1和的等差中項(1)求角;(2)若的平分線交于點,且,求的面積22.(10分)已知命題p:函數(shù)有零點;命題,(1)若命題p,q均為真命題,求實數(shù)a的取值范圍;(2)若為真命題,為假命題,求實數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)等比數(shù)列的公比為,可得出,即可得解.【詳解】設(shè)等比數(shù)列的公比為,可得出.故選:C.2、B【解析】求導(dǎo),令導(dǎo)數(shù)等于0,然后判斷導(dǎo)數(shù)符號可得,或者根據(jù)對勾函數(shù)圖象可解.【詳解】令,得,因為時,,時,,所以時有極大值;當時,,時,,所以時有極小值.故選:B3、C【解析】取的中點,連接,易證平面,進一步得到線面角,再解三角形即可.【詳解】如圖,取的中點,連接,三棱柱為直三棱柱,則平面,又平面,所以,又由題意可知為等腰直角三角形,且為斜邊的中點,從而,而平面,平面,且,所以平面,則為與平面所成的角.在直角中,.故選:C4、B【解析】作出不等式組對應(yīng)的平面區(qū)域,然后根據(jù)線性規(guī)劃的幾何意義求得答案.【詳解】作出不等式組所對應(yīng)的可行域如圖三角形陰影部分,平行移動直線直線,可以看到當移動過點A時,在y軸上的截距最小,聯(lián)立,解得,當且僅當動直線即過點時,取得最小值為,故選:B5、B【解析】根據(jù)雙曲線標準方程直接判斷.【詳解】方程即為,由方程表示雙曲線,可得,所以,,所以虛軸長為,故選:B.6、B【解析】根據(jù)數(shù)陣可知第行為,利用等差數(shù)列求和,即可得到答案;【詳解】根據(jù)數(shù)陣可知第行為,,故選:B7、C【解析】根據(jù)通項公式及求出,從而求出前8項和.【詳解】當時,,當時,,當時,,當時,,當時,,當時,,則數(shù)列的前8項和為.故選:C8、A【解析】利用條件可得數(shù)列為周期數(shù)列,再借助周期性計算得解.【詳解】∵∴,,所以數(shù)列是以3為周期的周期數(shù)列,∴,故選:A.9、A【解析】因為“若,則”是真命題,“若,則”是假命題,所以“”是“”成立的充分不必要條件.選A考點:充分必要條件的判斷【易錯點睛】本題主要考查了充分條件,必要條件,充要條件的判斷,屬于基礎(chǔ)題.對于命題“若,則”是真命題,我們說,并且說是的充分條件,是的必要條件,命題“若,則”是假命題,我們說,由充分條件,必要條件的定義,可以判斷出“”是“”成立的充分不必要條件.掌握充分條件,必要條件的定義是解題關(guān)鍵10、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數(shù)列,設(shè)冬至日的日影長為尺,公差為尺,利用等差數(shù)列的通項公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數(shù)列{},如冬至日的日影長為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A11、D【解析】設(shè),則,.所以當時,的最小值為.故選D.12、C【解析】由空間中直線與直線、直線與平面、平面與平面的位置關(guān)系,逐一核對四個選項得答案【詳解】解:對于A:若,則或,故A錯誤;對于B:若,則或與相交,故B錯誤;對于C:若,根據(jù)面面垂直的判定定理可得,故C正確;對于D:若則與平行、相交、或異面,故D錯誤;故選:C二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)三角形的中位線定理,結(jié)合橢圓的定義即可求得答案.【詳解】橢圓的左焦點為,如圖,設(shè)右焦點為,則,由N是的中點,O為得中點,,故,又,所以,故答案為:414、【解析】利用復(fù)數(shù)除法化簡,由共軛復(fù)數(shù)的概念寫出即可.【詳解】,∴.故答案為:15、②③④【解析】根據(jù)不等式的性質(zhì),正弦定理與四種命題的概念,命題的否定,判斷各命題【詳解】①,滿足,但,①錯;②在中,由正弦定理,因此其逆命題也是真命題,②正確;③存在命題的否定是全稱命題,命題“,”的否定是“,”,③正確;④由否命題的概念,“若,則”的否命題為“若,則”,④正確故答案為:②③④16、【解析】根據(jù)題意,作出拋物線的簡圖,求出拋物線的焦點坐標以及準線方程,分析可得為直角梯形中位線,由拋物線的定義分析可得答案【詳解】如圖,拋物線的焦點為,準線為,分別過,作準線的垂線,垂足為,,則有過的中點作準線的垂線,垂足為,則為直角梯形中位線,則,即,解得.所以的橫坐標為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】(1)設(shè)方程為(,),即得解;(2)由題得,即得解.【詳解】(1)解:由題意,設(shè)方程為(,),,,,,所以雙曲線的標準方程是(2)焦點到準線的距離是2,,∴當焦點在軸上時,拋物線的標準方程為或18、(1);(2)存在,理由見解析.【解析】(1)利用離心率,短軸長求出a,b,即可求得橢圓方程.(2)聯(lián)立直線與橢圓方程,利用韋達定理計算判定,由M為線段AB中點即可確定存在常數(shù)推理作答.【小問1詳解】因橢圓的短軸長是2,則,而離心率,解得,所以橢圓方程為.【小問2詳解】存在常數(shù),使恒成立,
由消去y并整理得:,設(shè),,則,,又,,,則有,而線段AB的中點為M,于是得,并且有所以存在常數(shù),使恒成立.19、(1);(2)存在,直線方程為或.【解析】(1)利用待定系數(shù)法即求;(2)利用直線與圓的位置關(guān)系可得,然后利用菱形的性質(zhì)可得圓心到直線的距離,即得.【小問1詳解】曲線與軸的交點為,與軸的交點為,,設(shè)圓的方程為,則,解得.∴圓的方程為;【小問2詳解】∵圓與直線交于,兩點,圓化為,圓心坐標為,半徑為.∴圓心到直線的距離,解得.假設(shè)存在點,使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經(jīng)驗證滿足條件.∴存在點,使得四邊形為菱形,此時的直線方程為或.20、(1)0.06,50名(2)64(分鐘)【解析】(1)利用頻率和為1可求解頻率,再利用頻率,頻數(shù),總數(shù)之間的關(guān)系可求解學生人數(shù);(2)平均數(shù):頻率分布直方圖中每個小長方形的中點乘以對應(yīng)的長方形面積之和;【小問1詳解】設(shè)圖中從左到右前3個組的頻率分別為3x,8x,19x依題意,得所以.所以第一組數(shù)據(jù)的頻率為,設(shè)調(diào)查中隨機抽取了n名學生的課外活動時間,則,得,所以調(diào)查中隨機抽取了50名學生的課外活動時間小問2詳解】由題意,這組數(shù)據(jù)的平均數(shù)(分鐘)21、(1);(2)【解析】(1)根據(jù)是1和的等差中項得到,再利用正弦定理結(jié)合商數(shù)關(guān)系,兩角和與差的三角函數(shù)化簡得到求解;(2)由和求得b,c的關(guān)系,再結(jié)合余弦定理求解即可.【詳解】(1)由已知得,在中,由正弦定理得,化簡得,因為,所以,所以;(2)由正弦定理得,又,即,由余弦定理得,所以,所以【點睛】方法點睛:在解有關(guān)三角形的題目時,要有意識地考慮用哪個定理更適合,或是兩個定理都要用,要抓住能夠利用某個定理的信息,一般地,如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到22、(1);(2).【解析】(1)根據(jù)二次函數(shù)的性質(zhì)求p為真時a的取值范圍,根據(jù)的性質(zhì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機電設(shè)備維修和保養(yǎng)
- 2024年12月4日chinadaily時政類語篇型填空專項訓練(學生們在詩歌中找到創(chuàng)造性的出路)-2025屆高三英語一輪復(fù)習
- (2024年秋季版)七年級道德與法治下冊 第四單元 體悟生命價值 第11課 自尊自信 第1框 做人當自尊教學思路 蘇教版
- 九年級歷史下冊 第一單元 殖民地人民的反抗與資本主義制度的擴展 第4課 日本明治維新教學實錄4 新人教版
- 2021秋季運動會學生作文十篇
- 2022年初三《平凡的世界》讀后感5篇范例
- 大學新生軍訓心得體會(合集15篇)
- 翠鳥教案模板七篇
- 當幸福來敲門電影觀后感范文6篇
- 駱駝祥子讀書筆記一至二十四章
- 鎮(zhèn)江市2023-2024學年九年級上學期期末英語試卷(含答案解析)
- 醫(yī)院禁毒行動方案
- 學生公寓物業(yè)服務(wù)方案投標方案(技術(shù)方案)
- 水上交通安全生產(chǎn)培訓
- 加強老舊小區(qū)物業(yè)管理的思考
- 超聲影像學基礎(chǔ)
- 倉庫溫濕度分布驗證報告
- 【A科技公司員工招聘問題調(diào)查研究及優(yōu)化策略13000字(論文)】
- 土地整治投標方案(完整技術(shù)標)
- 某煤礦潰倉事故專項安全風險辨識評估報告示例
- “雙減”背景下初中數(shù)學作業(yè)設(shè)計新思路 論文
評論
0/150
提交評論