版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆四川省眉山市仁壽一中南校區(qū)數(shù)學(xué)高三上期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個(gè)直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為()A. B. C. D.2.下列不等式正確的是()A. B.C. D.3.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.4.中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或5.設(shè),則A. B. C. D.6.2019年10月1日上午,慶祝中華人民共和國(guó)成立70周年閱兵儀式在天安門廣場(chǎng)隆重舉行.這次閱兵不僅展示了我國(guó)的科技軍事力量,更是讓世界感受到了中國(guó)的日新月異.今年的閱兵方陣有一個(gè)很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學(xué)院、國(guó)防大學(xué)、國(guó)防科技大學(xué)聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學(xué)校,學(xué)歷分別有學(xué)士、碩士、博士學(xué)位.現(xiàn)知道:①甲不是軍事科學(xué)院的;②來自軍事科學(xué)院的不是博士;③乙不是軍事科學(xué)院的;④乙不是博士學(xué)位;⑤國(guó)防科技大學(xué)的是研究生.則丙是來自哪個(gè)院校的,學(xué)位是什么()A.國(guó)防大學(xué),研究生 B.國(guó)防大學(xué),博士C.軍事科學(xué)院,學(xué)士 D.國(guó)防科技大學(xué),研究生7.已知函數(shù)的最大值為,若存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則的最小值為()A. B. C. D.8.已知是虛數(shù)單位,則()A. B. C. D.9.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.10.已知正方體的體積為,點(diǎn),分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.11.某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個(gè)容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為()A.100 B.1000 C.90 D.9012.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)在區(qū)間上的值域是,則的取值范圍是__________.14.若函數(shù)(R,)滿足,且的最小值等于,則ω的值為___________.15.如圖所示,點(diǎn),B均在拋物線上,等腰直角的斜邊為BC,點(diǎn)C在x軸的正半軸上,則點(diǎn)B的坐標(biāo)是________.16.小李參加有關(guān)“學(xué)習(xí)強(qiáng)國(guó)”的答題活動(dòng),要從4道題中隨機(jī)抽取2道作答,小李會(huì)其中的三道題,則抽到的2道題小李都會(huì)的概率為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)團(tuán)購已成為時(shí)下商家和顧客均非常青睞的一種省錢、高校的消費(fèi)方式,不少商家同時(shí)加入多家團(tuán)購網(wǎng).現(xiàn)恰有三個(gè)團(tuán)購網(wǎng)站在市開展了團(tuán)購業(yè)務(wù),市某調(diào)查公司為調(diào)查這三家團(tuán)購網(wǎng)站在本市的開展情況,從本市已加入了團(tuán)購網(wǎng)站的商家中隨機(jī)地抽取了50家進(jìn)行調(diào)查,他們加入這三家團(tuán)購網(wǎng)站的情況如下圖所示.(1)從所調(diào)查的50家商家中任選兩家,求他們加入團(tuán)購網(wǎng)站的數(shù)量不相等的概率;(2)從所調(diào)查的50家商家中任取兩家,用表示這兩家商家參加的團(tuán)購網(wǎng)站數(shù)量之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;(3)將頻率視為概率,現(xiàn)從市隨機(jī)抽取3家已加入團(tuán)購網(wǎng)站的商家,記其中恰好加入了兩個(gè)團(tuán)購網(wǎng)站的商家數(shù)為,試求事件“”的概率.18.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線極坐標(biāo)方程為.若直線交曲線于,兩點(diǎn),求線段的長(zhǎng).19.(12分)記為數(shù)列的前項(xiàng)和,N.(1)求;(2)令,證明數(shù)列是等比數(shù)列,并求其前項(xiàng)和.20.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點(diǎn),.(1)求線段的長(zhǎng).(2)若為線段上一點(diǎn),且,求二面角的余弦值.21.(12分)在銳角中,角A,B,C所對(duì)的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時(shí),求的面積.22.(10分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時(shí),求函數(shù)在上最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機(jī)取一點(diǎn),則該點(diǎn)取自水下的概率為故選C.【點(diǎn)睛】本題考查了幾何概型中的長(zhǎng)度型,屬于基礎(chǔ)題.2、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對(duì)數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、A【解析】
作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因?yàn)槠矫嫫矫?平面.故,故平面.故二面角為.又直線與平面所成角為,因?yàn)?故.故,當(dāng)且僅當(dāng)重合時(shí)取等號(hào).又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時(shí)取等號(hào).故.故選:A【點(diǎn)睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時(shí)運(yùn)用線面角的最小性進(jìn)行判定.屬于中檔題.4、A【解析】
根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:
①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線的離心率2或.
故選:A.【點(diǎn)睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.5、C【解析】分析:利用復(fù)數(shù)的除法運(yùn)算法則:分子、分母同乘以分母的共軛復(fù)數(shù),化簡(jiǎn)復(fù)數(shù),然后求解復(fù)數(shù)的模.詳解:,則,故選c.點(diǎn)睛:復(fù)數(shù)是高考中的必考知識(shí),主要考查復(fù)數(shù)的概念及復(fù)數(shù)的運(yùn)算.要注意對(duì)實(shí)部、虛部的理解,掌握純虛數(shù)、共軛復(fù)數(shù)這些重要概念,復(fù)數(shù)的運(yùn)算主要考查除法運(yùn)算,通過分母實(shí)數(shù)化轉(zhuǎn)化為復(fù)數(shù)的乘法,運(yùn)算時(shí)特別要注意多項(xiàng)式相乘后的化簡(jiǎn),防止簡(jiǎn)單問題出錯(cuò),造成不必要的失分.6、C【解析】
根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學(xué)位.【詳解】由題意①甲不是軍事科學(xué)院的,③乙不是軍事科學(xué)院的;則丙來自軍事科學(xué)院;由②來自軍事科學(xué)院的不是博士,則丙不是博士;由⑤國(guó)防科技大學(xué)的是研究生,可知丙不是研究生,故丙為學(xué)士.綜上可知,丙來自軍事科學(xué)院,學(xué)位是學(xué)士.故選:C.【點(diǎn)睛】本題考查了合情推理的簡(jiǎn)單應(yīng)用,由條件的相互牽制判斷符合要求的情況,屬于基礎(chǔ)題.7、B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進(jìn)而可以得到函數(shù)的最值,區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實(shí)數(shù),使得對(duì)任意實(shí)數(shù)總有成立,則區(qū)間(m,n)長(zhǎng)度要大于等于半個(gè)周期,即故答案為:B.【點(diǎn)睛】這個(gè)題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.8、B【解析】
根據(jù)復(fù)數(shù)的乘法運(yùn)算法則,直接計(jì)算,即可得出結(jié)果.【詳解】.故選B【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法,熟記運(yùn)算法則即可,屬于基礎(chǔ)題型.9、D【解析】
根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.10、D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當(dāng)時(shí)最小,設(shè)正方體的棱長(zhǎng)為,得,進(jìn)一步求出四面體的體積即可.【詳解】解:如圖,
∵點(diǎn)M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時(shí),最小,
∴
設(shè)正方體的棱長(zhǎng)為,則,∴.
取,連接,則共面,在中,設(shè)到的距離為,
設(shè)到平面的距離為,
.
故選D.【點(diǎn)睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計(jì)算能力,是中檔題.11、A【解析】
利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支出在的同學(xué)的頻率為.故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.12、B【解析】
先辨別出圖象中實(shí)線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對(duì)應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個(gè)極值點(diǎn),但其導(dǎo)函數(shù)圖象(實(shí)線)與軸有三個(gè)交點(diǎn),不合乎題意;若實(shí)線部分為函數(shù)的圖象,則該函數(shù)有兩個(gè)極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個(gè)交點(diǎn),合乎題意.對(duì)函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.【點(diǎn)睛】本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
配方求出頂點(diǎn),作出圖像,求出對(duì)應(yīng)的自變量,結(jié)合函數(shù)圖像,即可求解.【詳解】,頂點(diǎn)為因?yàn)楹瘮?shù)的值域是,令,可得或.又因?yàn)楹瘮?shù)圖象的對(duì)稱軸為,且,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查函數(shù)值域,考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.14、1【解析】
利用輔助角公式化簡(jiǎn)可得,由題可分析的最小值等于表示相鄰的一個(gè)對(duì)稱中心與一個(gè)對(duì)稱軸的距離為,進(jìn)而求解即可.【詳解】由題,,因?yàn)?,且的最小值等于,即相鄰的一個(gè)對(duì)稱中心與一個(gè)對(duì)稱軸的距離為,所以,即,所以,故答案為:1【點(diǎn)睛】本題考查正弦型函數(shù)的對(duì)稱性的應(yīng)用,考查三角函數(shù)的化簡(jiǎn).15、【解析】
設(shè)出兩點(diǎn)的坐標(biāo),結(jié)合拋物線方程、兩條直線垂直的條件以及兩點(diǎn)間的距離公式列方程,解方程求得的坐標(biāo).【詳解】設(shè),由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點(diǎn)睛】本題考查拋物線的方程和運(yùn)用,考查方程思想和運(yùn)算能力,屬于中檔題.16、【解析】
從四道題中隨機(jī)抽取兩道共6種情況,抽到的兩道全都會(huì)的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機(jī)抽取2道作答,共有種,小李會(huì)其中的三道題,則抽到的2道題小李都會(huì)的情況共有種,所以其概率為.故答案為:【點(diǎn)睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準(zhǔn)確求出基本事件的總數(shù)和某一事件包含的基本事件個(gè)數(shù).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)從而的分布列為012;(3).【解析】
(1)運(yùn)用概率的計(jì)算公式求概率分布,再運(yùn)用數(shù)學(xué)期望公式進(jìn)行求解;(2)借助題設(shè)條件運(yùn)用貝努力公式進(jìn)行分析求解:(1)記所選取額兩家商家加入團(tuán)購網(wǎng)站的數(shù)量相等為事件,則,所以他們加入團(tuán)購網(wǎng)站的數(shù)量不相等的概率為.(2)由題,知的可能取值分別為0,1,2,,,從而的分布列為012.(3)所調(diào)查的50家商家中加入了兩個(gè)團(tuán)購網(wǎng)站的商家有25家,將頻率視為概率,則從市中任取一家加入團(tuán)購網(wǎng)站的商家,他同時(shí)加入了兩個(gè)團(tuán)購網(wǎng)站的概率為,所以,所以事件“”的概率為.18、【解析】
由,化簡(jiǎn)得,由,所以直線的直角坐標(biāo)方程為,因?yàn)榍€的參數(shù)方程為,整理得,直線的方程與曲線的方程聯(lián)立,,整理得,設(shè),則,根據(jù)弦長(zhǎng)公式求解即可.【詳解】由,化簡(jiǎn)得,又因?yàn)?,所以直線的直角坐標(biāo)方程為,因?yàn)榍€的參數(shù)方程為,消去,整理得,將直線的方程與曲線的方程聯(lián)立,,消去,整理得,設(shè),則,所以,將,代入上式,整理得.【點(diǎn)睛】本題考查參數(shù)方程,極坐標(biāo)方程的應(yīng)用,結(jié)合弦長(zhǎng)公式的運(yùn)用,屬于中檔題.19、(1);(2)證明見詳解,【解析】
(1)根據(jù),可得,然后作差,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,用取代,得到新的式子,然后作差,可得結(jié)果,最后根據(jù)等比數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列所以【點(diǎn)睛】本題主要考查遞推公式以及之間的關(guān)系的應(yīng)用,考驗(yàn)觀察能力以及分析能力,屬中檔題.20、(1)的長(zhǎng)為4(2)【解析】
(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,設(shè),根據(jù)向量垂直關(guān)系計(jì)算得到答案.(2)計(jì)算平面的法向量為,為平面的一個(gè)法向量,再計(jì)算向量夾角得到答案.【詳解】(1)分別以所在直線為軸,建立如圖所示的空間直角坐標(biāo)系.設(shè),則,所以.,因?yàn)?,所以,即,解得,所以的長(zhǎng)為4.(2)因?yàn)椋?,又,?設(shè)為平面的法向量,則即取,解得,所以為平面的一個(gè)法向量.顯然,為平面的一個(gè)法向量,則,據(jù)圖可知,二面角的余弦值為.【點(diǎn)睛】本題考查了立體幾何中的線段長(zhǎng)度,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21、(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計(jì)算得出.【詳解】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版文具采購合同3篇
- 專用木結(jié)構(gòu)工程承包合同書2024年版版B版
- 專業(yè)橋架施工包工協(xié)議范例(2024版)版B版
- 2025年4S店汽車銷售及二手車置換服務(wù)合同范本3篇
- 2024跨國(guó)技術(shù)轉(zhuǎn)讓與合作合同
- 專業(yè)項(xiàng)目建議書編寫委托協(xié)議簡(jiǎn)化版版B版
- 2025年度科研場(chǎng)地租賃合同終止及設(shè)備回收協(xié)議3篇
- 2025年度老舊小區(qū)墻體拆除及改造工程勞務(wù)分包合同范本4篇
- 2025年度酒店會(huì)議室租賃協(xié)議書(含全方位服務(wù)套餐)
- 二零二五年度食堂食堂食堂食堂員工餐廳食品安全監(jiān)管合同
- 金色簡(jiǎn)約蛇年年終總結(jié)匯報(bào)模板
- 農(nóng)用地土壤環(huán)境質(zhì)量類別劃分技術(shù)指南(試行)(環(huán)辦土壤2017第97號(hào))
- 反向開票政策解讀課件
- 工程周工作計(jì)劃
- 房地產(chǎn)銷售任務(wù)及激勵(lì)制度
- 六年級(jí)語文下冊(cè)14文言文二則《學(xué)弈》課件
- 2024年內(nèi)蒙古中考語文試卷五套合卷附答案
- 并購指南(如何發(fā)現(xiàn)好公司)
- 垃圾分類亭合同協(xié)議書
- 物權(quán)轉(zhuǎn)移協(xié)議
- 高三高考地理一輪課時(shí)練習(xí):洋流(單選題)
評(píng)論
0/150
提交評(píng)論