版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
廣東省廣州市實驗中學2025屆高一上數(shù)學期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,則A. B.C. D.2.已知函數(shù)的最小正周期,且是函數(shù)的一條對稱軸,是函數(shù)的一個對稱中心,則函數(shù)在上的取值范圍是()A. B.C. D.3.已知直二面角,點,,為垂足,,,為垂足.若,則到平面的距離等于A. B.C. D.14.若在上單調(diào)遞減,則的取值范圍是().A. B.C. D.5.地震以里氏震級來度量地震的強度,若設為地震時所散發(fā)出來的相對能量,則里氏震級可定義為.在2021年3月下旬,地區(qū)發(fā)生里氏級地震,地區(qū)發(fā)生里氏7.3級地震,則地區(qū)地震所散發(fā)出來的相對能量是地區(qū)地震所散發(fā)出來的相對能量的()倍.A.7 B.C. D.6.為了鼓勵大家節(jié)約用水,遵義市實行了階梯水價制度,下表是年遵義市每戶的綜合用水單價與戶年用水量的關(guān)系表.假設居住在遵義市的艾世宗一家年共繳納的水費為元,則艾世宗一家年共用水()分檔戶年用水量綜合用水單價/(元)第一階梯(含)第二階梯(含)第三階梯以上A. B.C. D.7.如圖所示,正方體中,分別為棱的中點,則在平面內(nèi)與平面平行的直線A.不存在 B.有1條C.有2條 D.有無數(shù)條8.已知是函數(shù)的反函數(shù),則的值為()A.0 B.1C.10 D.1009.已知集合,若,則()A.-1 B.0C.2 D.310.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知平面和直線,給出條件:①;②;③;④;⑤(1)當滿足條件_________時,有;(2)當滿足條件________時,有.(填所選條件的序號)12.已知某扇形的周長是,面積為,則該扇形的圓心角的弧度數(shù)是______.13.某地街道呈現(xiàn)東—西、南—北向的網(wǎng)格狀,相鄰街距都為1,兩街道相交的點稱為格點.若以互相垂直的兩條街道為坐標軸建立平面直角坐標系,根據(jù)垃圾分類要求,下述格點為垃圾回收點:,,,,,.請確定一個格點(除回收點外)___________為垃圾集中回收站,使這6個回收點沿街道到回收站之間路程的和最短.14.已知平面向量,,,,,則的值是______15.函數(shù)的最大值為().16.函數(shù)的圖象必過定點___________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知全集.(1)求;(2)求.18.已知函數(shù).(1)判斷函數(shù)f(x)的奇偶性;(2)討論f(x)的單調(diào)性;(3)解不等式.19.已知,Ⅰ求的值;Ⅱ求的值;Ⅲ若且,求的值20.已知函數(shù)(1)求證:用單調(diào)性定義證明函數(shù)是上的嚴格減函數(shù);(2)已知“函數(shù)的圖像關(guān)于點對稱”的充要條件是“對于定義域內(nèi)任何恒成立”.試用此結(jié)論判斷函數(shù)的圖像是否存在對稱中心,若存在,求出該對稱中心的坐標;若不存在,說明理由;(3)若對任意,都存在及實數(shù),使得,求實數(shù)的最大值.21.已知函數(shù),(1)求的最小正周期;(2)求單調(diào)遞減區(qū)間
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式把要求的式子化為,把已知條件代入運算,求得結(jié)果.【詳解】,,故選D.【點睛】本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角的余弦公式的應用,屬于中檔題.2、B【解析】依題意求出的解析式,再根據(jù)x的取值范圍,求出的范圍,再根據(jù)正弦函數(shù)的性質(zhì)計算可得.【詳解】函數(shù)的最小正周期,∴,解得:,由于是函數(shù)的一條對稱軸,且為的一個對稱中心,∴,(),則,(),則,又∵,,由于,∴,故,∵,∴,∴,∴.故選:B3、C【解析】如圖,在平面內(nèi)過點作于點因為為直二面角,,所以,從而可得.又因為,所以面,故的長度就是點到平面的距離在中,因為,所以因為,所以.則在中,因為,所以.因為,所以,故選C4、B【解析】令f(x)=,由題意得f(x)在上單調(diào)遞增,且f(﹣1),由此能求出a的取值范圍【詳解】∵函數(shù)在上單調(diào)遞減,令f(x)=,∴f(x)=在上單調(diào)遞增,且f(﹣1)∴,解得a≤8故選B.【點睛】本題考查實數(shù)值的求法,注意函數(shù)的單調(diào)性的合理運用,屬于基礎題.5、C【解析】把兩個震級代入后,兩式作差即可解決此題【詳解】設里氏3.1級地震所散發(fā)出來的能量為,里氏7.3級地震所散發(fā)出來的能量為,則①,②②①得:,解得:故選:6、B【解析】設戶年用水量為,年繳納稅費為元,根據(jù)題意求出的解析式,再利用分段函數(shù)的解析式可求出結(jié)果.【詳解】設戶年用水量為,年繳納的稅費為元,則,即,當時,,當時,,當時,,所以,解得,所以艾世宗一家年共用水.故選:B7、D【解析】根據(jù)已知可得平面與平面相交,兩平面必有唯一的交線,則在平面內(nèi)與交線平行的直線都與平面平行,即可得出結(jié)論.【詳解】平面與平面有公共點,由公理3知平面與平面必有過的交線,在平面內(nèi)與平行的直線有無數(shù)條,且它們都不在平面內(nèi),由線面平行的判定定理可知它們都與平面平行.故選:D.【點睛】本題考查平面的基本性質(zhì)、線面平行的判定,熟練掌握公理、定理是解題的關(guān)鍵,屬于基礎題.8、A【解析】根據(jù)給定條件求出的解析式,再代入求函數(shù)值作答.【詳解】因是函數(shù)的反函數(shù),則,,所以的值為0.故選:A9、C【解析】根據(jù)元素與集合的關(guān)系列方程求解即可.【詳解】因為,所以或,而無實數(shù)解,所以.故選:C10、A【解析】當時,在上是增函數(shù),且恒大于零,即當時,在上是減函數(shù),且恒大于零,即,因此選A點睛:1.復合函數(shù)單調(diào)性的規(guī)則若兩個簡單函數(shù)的單調(diào)性相同,則它們的復合函數(shù)為增函數(shù);若兩個簡單函數(shù)的單調(diào)性相反,則它們的復合函數(shù)為減函數(shù).即“同增異減”
函數(shù)單調(diào)性的性質(zhì)(1)若f(x),g(x)均為區(qū)間A上的增(減)函數(shù),則f(x)+g(x)也是區(qū)間A上的增(減)函數(shù),更進一步,即增+增=增,增-減=增,減+減=減,減-增=減;(2)奇函數(shù)在其關(guān)于原點對稱的區(qū)間上單調(diào)性相同,偶函數(shù)在其關(guān)于原點對稱的區(qū)間上單調(diào)性相反二、填空題:本大題共6小題,每小題5分,共30分。11、(1).③⑤;(2).②⑤【解析】若m?α,α∥β,則m∥β;若m⊥α,α∥β,則m⊥β故答案為(1)③⑤(2)②⑤考點:本題主要考查直線與平面垂直的位置關(guān)系點評:熟練掌握直線與平面平行、垂直的判定與性質(zhì),基礎題12、2【解析】由扇形的周長和面積,可求出扇形的半徑及弧長,進而可求出該扇形的圓心角.【詳解】設扇形的半徑為,所對弧長為,則有,解得,故.故答案為:2.【點睛】本題考查扇形面積公式、弧長公式的應用,考查學生的計算求解能力,屬于基礎題.13、【解析】根據(jù)題意,設滿足題意得格點為,這6個回收點沿街道到回收站之間路程的和為,故,再分別求和的最小值時的即可得答案.【詳解】解:設滿足題意得格點為,這6個回收點沿街道到回收站之間路程和為,則,令,由于其去掉絕對值為一次函數(shù),故其最小值在區(qū)間端點值,所以代入得,所以當時,取得最小值,同理,令,代入得所以當或時,取得最小值,所以當,或時,這6個回收點沿街道到回收站之間路程的和最小,由于是一個回收點,故舍去,所以當,這6個回收點沿街道到回收站之間路程的和最小,故格點為故答案為:14、【解析】根據(jù)向量垂直向量數(shù)量積等于,解得α·β=,再利用向量模的求法,將式子平方即可求解.【詳解】由得,所以,所以所以.故答案為:15、【解析】利用可求最大值.【詳解】因為,即,,取到最小值;所以函數(shù)的最大值為.故答案為:.【點睛】本題主要考查三角函數(shù)的最值問題,借助正弦函數(shù)的值域能方便求解,側(cè)重考查數(shù)學抽象的核心素養(yǎng).16、【解析】f(x)=k(x-1)-ax-1,x=1時,y=f(x)=-1,∴圖象必過定點(1,-1).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)交集計算可得.(2)根據(jù)補集與并集的計算可得.【小問1詳解】由己知,所以【小問2詳解】∵,所以,所以.18、(1)奇函數(shù)(2)在上單調(diào)遞增(3)【解析】(1)依據(jù)奇偶函數(shù)定義去判斷即可;(2)以定義法去證明函數(shù)的單調(diào)性;(3)把抽象不等式轉(zhuǎn)化為整式不等式再去求解即可.【小問1詳解】由得,所以函數(shù)f(x)的定義域為,關(guān)于原點對稱又因為,故函數(shù)為奇函數(shù)【小問2詳解】設任意,,則又,則,則,即故在上單調(diào)遞增【小問3詳解】由(2)知,函數(shù)在上單調(diào)遞增,所以由,可得,解得,所以不等式的解集為19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】Ⅰ根據(jù)同角的三角函數(shù)的關(guān)系即可求出;Ⅱ根據(jù)二倍角的正弦公式、二倍角的余弦公式以及兩角差的余弦公式即可求出;Ⅲ由,根據(jù)同角的三角函數(shù)的關(guān)系結(jié)合兩角差的正弦公式即可求出【詳解】Ⅰ,,,.Ⅱ,.Ⅲ,,,,,.【點睛】三角函數(shù)求值有三類,(1)“給角求值”;(2)“給值求值”:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題關(guān)鍵在于“變角”,使其角相同或具有某種關(guān)系.(3)“給值求角”:實質(zhì)是轉(zhuǎn)化為“給值求值”,先求角的某一函數(shù)值,再求角的范圍,確定角20、(1)見解析;(2)存在,為;(3)2.【解析】(1)先設,然后利用作差法比較與的大小即可判斷;假設函數(shù)的圖像存在對稱中心,(2)結(jié)合函數(shù)的對稱性及恒成立問題可建立關(guān)于,的方程,進而可求,;(3)由已知代入整理可得,的關(guān)系,然后結(jié)合恒成立可求的范圍,進而可求【小問1詳解】設,則,∴,∴函數(shù)是上的嚴格減函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年銷售合同:某生產(chǎn)公司將某產(chǎn)品銷售給某經(jīng)銷商
- 二零二五年度廟會場地租賃合同及場地布置設計方案合同
- 2024年線上線下聯(lián)合營銷合同3篇
- 二零二五年度房地產(chǎn)開發(fā)商項目擔保延期合同3篇
- 新能源產(chǎn)業(yè)鏈投資合作項目協(xié)議
- 職業(yè)交易者投資課程設計
- 網(wǎng)絡安全課課程設計RSA
- 職業(yè)教育課程設計論文
- 2024潤滑油品牌推廣與營銷合作協(xié)議范本3篇
- 證券課程設計收獲
- 2025年云南昆明經(jīng)濟技術(shù)開發(fā)區(qū)投資開發(fā)(集團)有限公司招聘筆試參考題庫附帶答案詳解
- 社會單位消防安全知識考試題庫(濃縮500題)
- 企業(yè)地震應急預案樣本(三篇)
- 2023-2024學年廣東省廣州市花都區(qū)九年級(上)期末物理試卷(含答案)
- GB/T 5483-2024天然石膏
- 線上推廣授權(quán)合同范例
- 保定學院《大學英語》2023-2024學年第一學期期末試卷
- 2024-2025學年九年級語文上冊部編版期末綜合模擬試卷(含答案)
- 鄉(xiāng)村振興暨干部素質(zhì)提升培訓班學習心得體會
- IATF16949:2024標準質(zhì)量手冊
- 反詐知識競賽題庫及答案(共286題)
評論
0/150
提交評論