玉溪市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試試題含解析_第1頁
玉溪市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試試題含解析_第2頁
玉溪市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試試題含解析_第3頁
玉溪市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試試題含解析_第4頁
玉溪市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

玉溪市重點(diǎn)中學(xué)2025屆高二上數(shù)學(xué)期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.102.已知點(diǎn),,,動點(diǎn)P滿足,則的取值范圍為()A. B.C. D.3.在棱長均為1的平行六面體中,,則()A. B.3C. D.64.設(shè)函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.5.已知平面法向量為,,則直線與平面的位置關(guān)系為A. B.C.與相交但不垂直 D.6.從編號分別為,,,,的五個大小完全相同的小球中,隨機(jī)取出三個小球,則恰有兩個小球編號相鄰的概率為()A. B.C. D.7.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.8.在平面直角坐標(biāo)系中,雙曲線C:的左焦點(diǎn)為F,過F且與x軸垂直的直線與C交于A,B兩點(diǎn),若是正三角形,則C的離心率為()A. B.C. D.9.已知正方體的棱長為1,且滿足,則的最小值是()A. B.C. D.10.從1,2,3,4,5中隨機(jī)抽取三個數(shù),則這三個數(shù)能成為一個三角形三邊長的概率為()A. B.C. D.11.已知雙曲線的右焦點(diǎn)為,漸近線為,,過的直線與垂直,且交于點(diǎn),交于點(diǎn),若,則雙曲線的離心率為()A. B.C.2 D.12.在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個直角三角形的斜邊長等于則這個直角三角形周長的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.求值______.14.已知A,B為x,y正半軸上的動點(diǎn),且,O為坐標(biāo)原點(diǎn),現(xiàn)以為邊長在第一象限做正方形,則的最大值為___________.15.已知球的表面積為,則該球的體積為______.16.某班學(xué)號的學(xué)生鉛球測試成績?nèi)缦卤恚簩W(xué)號12345678成績9.17.98.46.95.27.18.08.1可以估計這8名學(xué)生鉛球測試成績的第25百分位數(shù)為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱柱中,是上的點(diǎn),滿足為等邊三角形.(1)求證:平面;(2)求二面角的余弦值.18.(12分)已知圓C經(jīng)過,,三點(diǎn),并且與y軸交于P,Q兩點(diǎn),求線段PQ的長度.19.(12分)如圖,點(diǎn)是曲線上的動點(diǎn)(點(diǎn)在軸左側(cè)),以點(diǎn)為頂點(diǎn)作等腰梯形,使點(diǎn)在此曲線上,點(diǎn)在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時,等腰梯形的面積最大?求出最大面積.20.(12分)已知數(shù)列的前項(xiàng)和是,且,等差數(shù)列中,(1)求數(shù)列的通項(xiàng)公式;(2)定義:記,求數(shù)列的前20項(xiàng)和21.(12分)如圖,在三棱錐中,是邊長為2的等邊三角形,,O是BC的中點(diǎn),(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點(diǎn),當(dāng)時,二面角E-BD-C大小為60°,求t的值22.(10分)已知等比數(shù)列的前項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A2、C【解析】由題設(shè)分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點(diǎn)的距離范圍即可.【詳解】由題設(shè),在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點(diǎn)的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C3、C【解析】設(shè),,,利用結(jié)合數(shù)量積的運(yùn)算即可得到答案.【詳解】設(shè),,,由已知,得,,,,所以,所以.故選:C4、A【解析】利用導(dǎo)數(shù)的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A5、A【解析】.本題選擇A選項(xiàng).6、C【解析】利用古典概型計算公式計算即可【詳解】從編號分別為,,,,的五個大小完全相同的小球中,隨機(jī)取出三個小球共有種不同的取法,恰好有兩個小球編號相鄰的有:,共有6種所以概率為故選:C7、A【解析】求出函數(shù)圖象的對稱中心,結(jié)合函數(shù)圖象平移變換可得結(jié)果.【詳解】因?yàn)椋?,,所以,函?shù)圖象的對稱中心為,將函數(shù)的圖象向右平移個單位,再將所得圖象向下平移個單位長度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A8、A【解析】設(shè)雙曲線半焦距為c,求出,由給定的正三角形建立等量關(guān)系,結(jié)合計算作答.【詳解】設(shè)雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A9、C【解析】由空間向量共面定理可得點(diǎn)四點(diǎn)共面,從而將求的最小值轉(zhuǎn)化為求點(diǎn)到平面的距離,再根據(jù)等體積法計算.【詳解】因?yàn)椋煽臻g向量的共面定理可知,點(diǎn)四點(diǎn)共面,即點(diǎn)在平面上,所以的最小值為點(diǎn)到平面的距離,由正方體棱長為,可得是邊長為的等邊三角形,則,,由等體積法得,,所以,所以的最小值為.故選:C【點(diǎn)睛】共面定理的應(yīng)用:設(shè)是不共面的四點(diǎn),則對空間任意一點(diǎn),都存在唯一的有序?qū)崝?shù)組使得,說明:若,則四點(diǎn)共面.10、C【解析】列舉出所有情況,然后根據(jù)兩邊之和大于第三邊數(shù)出能構(gòu)成三角形的情況,進(jìn)而得到答案.【詳解】5個數(shù)取3個數(shù)的所有情況如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10種情況,而能構(gòu)成三角形的情況有{2,3,4;2,4,5;3,4,5}共3種情況,故所求概率.故選:C.11、C【解析】由題設(shè)易知是的中垂線,進(jìn)而可得,結(jié)合雙曲線參數(shù)關(guān)系及離心率公式求雙曲線的離心率即可.【詳解】由題意,是的中垂線,故,由對稱性得,則,故,∴.故選:C.12、C【解析】設(shè)直角三角形的兩條直角邊邊長分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長分別為,則.因?yàn)?,所以,所以,?dāng)且僅當(dāng)時,等號成立.故這個直角三角形周長的最大值為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:14、32【解析】建立平面直角坐標(biāo)系,設(shè)出角度和邊長,表達(dá)出點(diǎn)坐標(biāo),進(jìn)而表達(dá)出,利用三角函數(shù)換元,求出最大值.【詳解】如圖,過點(diǎn)D作DE⊥x軸于點(diǎn)E,過點(diǎn)C作CF⊥y軸于點(diǎn)F,設(shè),(),則由三角形全等可知,設(shè),,則,則,,則,令,,則,當(dāng)時,取得最大值,最大值為32故答案為:3215、【解析】設(shè)球半徑為,由球表面積求出,然后可得球的體積【詳解】設(shè)球半徑為,∵球的表面積為,∴,∴,∴該球的體積為故答案為【點(diǎn)睛】解答本題的關(guān)鍵是熟記球的表面積和體積公式,解題時由條件求得球的半徑后可得所求結(jié)果16、【解析】利用百分位數(shù)的計算方法即可求解.【詳解】將以上數(shù)據(jù)從小到大排列為,,,,,,,;%,則第25百分位數(shù)第項(xiàng)和第項(xiàng)的平均數(shù),即為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)題意證明,,然后根據(jù)線面垂直的判定定理證明問題;(2)以,,為軸的正方向建立空間直角坐標(biāo)系,求平面,平面的法向量,求法向量的夾角,根據(jù)二面角的余弦值與法向量的夾角的余弦的關(guān)系確定二面角的余弦值.【小問1詳解】由題意,,等邊三角形,,∵平面ABCD,∴,則,即為中點(diǎn).連接,∵平面,平面,∴,易得,則,又,于是,即,同理,即,又,平面平面.【小問2詳解】由題意直線平面,四邊形為正方形,故以,,為軸的正方向建立空間直角坐標(biāo)系,則,.設(shè)面的法向量為,同理可得面的法向量,∴二面角的余弦值為18、【解析】設(shè)圓的方程為,代入點(diǎn)的坐標(biāo),求出,,,令,即可得出結(jié)論【詳解】解:設(shè)圓的方程為,則,,,,,即,令,可得,解得、,所以、,或、,,19、(1);(2)當(dāng)時取到最大值,【解析】(1)設(shè)點(diǎn),則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進(jìn)而得的最值,進(jìn)而得的最大值.【詳解】解:(1)根據(jù)題意,設(shè)點(diǎn),由是曲線上的動點(diǎn)得:,由于橢圓與軸交點(diǎn)為,故,所以即:(2)結(jié)合(1),對兩邊平方得:,令,則,所以當(dāng)時,,當(dāng)時,,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當(dāng)時,取到最大值,.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究實(shí)際問題,考查數(shù)學(xué)應(yīng)用能力與計算能力,是中檔題.20、(1);(2)【解析】(1)利用求得遞推關(guān)系得等比數(shù)列,從而得通項(xiàng)公式,再由等差數(shù)列的基本時法求得通項(xiàng)公式;(2)根據(jù)定義求得,然后分組求和法求得和【小問1詳解】由題意,當(dāng)時,兩式相減,得,即是首項(xiàng)為3,公比為3的等比數(shù)列設(shè)數(shù)列的公差為,小問2詳解】由21、(1)證明見解析(2)3【解析】(1)證得平面BCD,結(jié)合面面垂直判定定理即可得出結(jié)論;(2)建立空間直角坐標(biāo)系,利用空間向量求二面角的公式可得,進(jìn)而解方程即可求出結(jié)果.【小問1詳解】因?yàn)椋琌是BC的中點(diǎn),所以,又因?yàn)?,且,平面BCD,平面BCD,所以平面BCD,因?yàn)槠矫鍭BC,所以平面平面BCD【小問2詳解】連接OD,又因?yàn)槭沁呴L為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系設(shè),則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因?yàn)锳-BCD的體積為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論