2023-2024學年寧夏銀川九中高三下學期期末質量調研(一模)數學試題_第1頁
2023-2024學年寧夏銀川九中高三下學期期末質量調研(一模)數學試題_第2頁
2023-2024學年寧夏銀川九中高三下學期期末質量調研(一模)數學試題_第3頁
2023-2024學年寧夏銀川九中高三下學期期末質量調研(一模)數學試題_第4頁
2023-2024學年寧夏銀川九中高三下學期期末質量調研(一模)數學試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年寧夏銀川九中高三下學期期末質量調研(一模)數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.2.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P23.以下關于的命題,正確的是A.函數在區(qū)間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象4.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.5.已知復數,(為虛數單位),若為純虛數,則()A. B.2 C. D.6.已知,,,,.若實數,滿足不等式組,則目標函數()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值7.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,aβ,bα,則“ab“是“αβ”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,9.要得到函數的圖象,只需將函數的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度10.若復數()是純虛數,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.記等差數列的公差為,前項和為.若,,則()A. B. C. D.12.現有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學生的成績,并根據這1000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內的學生共有____人.14.已知等差數列的前項和為,且,則______.15.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當地政府欲投資開發(fā)區(qū)域發(fā)展經濟,其中分別在公路上,且與圓弧相切,設,的面積為.(1)求關于的函數解析式;(2)當為何值時,面積為最小,政府投資最低?16.在中,,,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當(為自然對數的底數)時,求函數的極值;(2)為的導函數,當,時,求證:.18.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.19.(12分)已知集合,,,將的所有子集任意排列,得到一個有序集合組,其中.記集合中元素的個數為,,,規(guī)定空集中元素的個數為.當時,求的值;利用數學歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.20.(12分)已知,,(1)求的最小正周期及單調遞增區(qū)間;(2)已知銳角的內角,,的對邊分別為,,,且,,求邊上的高的最大值.21.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.22.(10分)設函數f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實數a的值;(2)證明:f(x).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

分析:由題意可得為等腰三角形,為等邊三角形,把數量積分拆,設,數量積轉化為關于t的函數,用函數可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉化為函數求最值。2.C【解析】

將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數,屬于基礎題.3.D【解析】

利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.4.A【解析】

作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.5.C【解析】

把代入,利用復數代數形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數,∴,解得.故選C.【點睛】本題考查復數代數形式的除法運算,考查復數的基本概念,是基礎題.6.B【解析】

判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數一定有最大值和最小值.故選:B【點睛】本題考查了目標函數最值是否存在問題,考查了數形結合思想,考查了不等式的性質應用.7.D【解析】

根據面面平行的判定及性質求解即可.【詳解】解:a?α,b?β,a∥β,b∥α,由a∥b,不一定有α∥β,α與β可能相交;反之,由α∥β,可得a∥b或a與b異面,∴a,b是兩條不同的直線,α,β是兩個不同的平面,且a?α,b?β,a∥β,b∥α,則“a∥b“是“α∥β”的既不充分也不必要條件.故選:D.【點睛】本題主要考查充分條件與必要條件的判斷,考查面面平行的判定與性質,屬于基礎題.8.D【解析】

根據題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區(qū)域如圖所示,其中,,

設,則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.9.C【解析】

根據三角函數圖像的變換與參數之間的關系,即可容易求得.【詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【點睛】本題考查三角函數圖像的平移,涉及誘導公式的使用,屬基礎題.10.B【解析】

化簡復數,由它是純虛數,求得,從而確定對應的點的坐標.【詳解】是純虛數,則,,,對應點為,在第二象限.故選:B.【點睛】本題考查復數的除法運算,考查復數的概念與幾何意義.本題屬于基礎題.11.C【解析】

由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.12.B【解析】

求得基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數為,其中乙丙兩人恰好參加同一項活動的基本事件個數為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數和所求事件所包含的基本事件的個數,利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.00514.【解析】

根據等差數列的性質求得,結合等差數列前項和公式求得的值.【詳解】因為為等差數列,所以,解得,所以.故答案為:【點睛】本小題考查等差數列的性質,前項和公式的應用等基礎知識;考查運算求解能力,應用意識.15.(1);(2).【解析】

(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,,進而表示直線的方程,由直線與圓相切構建關系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數值域可求得t的取值范圍,進而對原面積的函數用含t的表達式換元,再令進行換元,并構建新的函數,由二次函數性質即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.【點睛】本題考查三角函數的實際應用,應優(yōu)先結合實際建立合適的數學模型,再按模型求最值,屬于難題.16.【解析】

先由題意得:,再利用向量數量積的幾何意義得,可得結果.【詳解】由知:,則在方向的投影為,由向量數量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應用,考查了數量積的幾何意義及向量的模的運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)極大值,極小值;(2)詳見解析.【解析】

首先確定函數的定義域和;(1)當時,根據的正負可確定單調性,進而確定極值點,代入可求得極值;(2)通過分析法可將問題轉化為證明,設,令,利用導數可證得,進而得到結論.【詳解】由題意得:定義域為,,(1)當時,,當和時,;當時,,在,上單調遞增,在上單調遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設,令,則,在上單調遞增,,則由,從而有:.【點睛】本題考查導數在研究函數中的應用,涉及到函數極值的求解、利用導數證明不等式的問題;本題不等式證明的關鍵是能夠將多個變量的問題轉化為一個變量的問題,通過構造函數的方式將問題轉化為函數最值的求解問題.18.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.19.;證明見解析.【解析】

當時,集合共有個子集,即可求出結果;分類討論,利用數學歸納法證明.【詳解】當時,集合共有個子集,所以;①當時,,由可知,,此時令,,,,滿足對任意,都有,且;②假設當時,存在有序集合組滿足題意,且,則當時,集合的子集個數為個,因為是4的整數倍,所以令,,,,且恒成立,即滿足對任意,都有,且,綜上,原命題得證.【點睛】本題考查集合的自己個數的研究,結合數學歸納法的應用,屬于難題.20.(1)的最小正周期為:;函數單調遞增區(qū)間為:;(2).【解析】

(1)根據誘導公式,結合二倍角的正弦公式、輔助角公式把函數的解析式化簡成余弦型函數解析式形式,利用余弦型函數的最小正周期公式和單調性進行求解即可;(2)由(1)結合,求出的大小,再根據三角形面積公式,結合余弦定理和基本不等式進行求解即可.【詳解】(1)的最小正周期為:;當時,即當時,函數單調遞增,所以函數單調遞增區(qū)間為:;(2)因為,所以設邊上的高為,所以有,由余弦定理可知:(當用僅當時,取等號),所以,因此邊上的高的最大值.【點睛】本題考查了正弦的二倍角公式、誘導公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應用,考查了數學運算能力.21.(1)證明見解析;(2).【解析】

(1)構造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論