![2023-2024學(xué)年山東省嘉祥一中高三高考測(cè)試(一)數(shù)學(xué)試題_第1頁(yè)](http://file4.renrendoc.com/view14/M02/22/2B/wKhkGWce6geAXtJwAAHYvp_9_u8709.jpg)
![2023-2024學(xué)年山東省嘉祥一中高三高考測(cè)試(一)數(shù)學(xué)試題_第2頁(yè)](http://file4.renrendoc.com/view14/M02/22/2B/wKhkGWce6geAXtJwAAHYvp_9_u87092.jpg)
![2023-2024學(xué)年山東省嘉祥一中高三高考測(cè)試(一)數(shù)學(xué)試題_第3頁(yè)](http://file4.renrendoc.com/view14/M02/22/2B/wKhkGWce6geAXtJwAAHYvp_9_u87093.jpg)
![2023-2024學(xué)年山東省嘉祥一中高三高考測(cè)試(一)數(shù)學(xué)試題_第4頁(yè)](http://file4.renrendoc.com/view14/M02/22/2B/wKhkGWce6geAXtJwAAHYvp_9_u87094.jpg)
![2023-2024學(xué)年山東省嘉祥一中高三高考測(cè)試(一)數(shù)學(xué)試題_第5頁(yè)](http://file4.renrendoc.com/view14/M02/22/2B/wKhkGWce6geAXtJwAAHYvp_9_u87095.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山東省嘉祥一中高三高考測(cè)試(一)數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm32.若復(fù)數(shù),,其中是虛數(shù)單位,則的最大值為()A. B. C. D.3.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.4.已知實(shí)數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]5.已知函數(shù),集合,,則()A. B.C. D.6.在復(fù)平面內(nèi),復(fù)數(shù)z=i對(duì)應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn),所得向量對(duì)應(yīng)的復(fù)數(shù)是()A. B. C. D.7.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.8.已知直線過(guò)圓的圓心,則的最小值為()A.1 B.2 C.3 D.49.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.1210.定義,已知函數(shù),,則函數(shù)的最小值為()A. B. C. D.11.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或512.的展開式中,含項(xiàng)的系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),則實(shí)數(shù)的取值范圍為______.14.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.15.若復(fù)數(shù)(是虛數(shù)單位),則________16.過(guò)圓的圓心且與直線垂直的直線方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.18.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F(xiàn),G分別是棱AA1,AC和A1C1的中點(diǎn),以為正交基底,建立如圖所示的空間直角坐標(biāo)系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.19.(12分)設(shè)函數(shù)()的最小值為.(1)求的值;(2)若,,為正實(shí)數(shù),且,證明:.20.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.21.(12分)某商場(chǎng)為改進(jìn)服務(wù)質(zhì)量,在進(jìn)場(chǎng)購(gòu)物的顧客中隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查.調(diào)查后,就顧客“購(gòu)物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:滿意不滿意男女是否有的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿意度與性別有關(guān)?若在購(gòu)物體驗(yàn)滿意的問(wèn)卷顧客中按照性別分層抽取了人發(fā)放價(jià)值元的購(gòu)物券.若在獲得了元購(gòu)物券的人中隨機(jī)抽取人贈(zèng)其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率.附表及公式:.22.(10分)某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買每滿元的商品即可抽獎(jiǎng)一次.抽獎(jiǎng)規(guī)則如下:抽獎(jiǎng)?wù)邤S各面標(biāo)有點(diǎn)數(shù)的正方體骰子次,若擲得點(diǎn)數(shù)大于,則可繼續(xù)在抽獎(jiǎng)箱中抽獎(jiǎng);否則獲得三等獎(jiǎng),結(jié)束抽獎(jiǎng),已知抽獎(jiǎng)箱中裝有個(gè)紅球與個(gè)白球,抽獎(jiǎng)?wù)邚南渲腥我饷鰝€(gè)球,若個(gè)球均為紅球,則獲得一等獎(jiǎng),若個(gè)球?yàn)閭€(gè)紅球和個(gè)白球,則獲得二等獎(jiǎng),否則,獲得三等獎(jiǎng)(抽獎(jiǎng)箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎(jiǎng)活動(dòng)獲得三等獎(jiǎng)的概率;若一等獎(jiǎng)可獲獎(jiǎng)金元,二等獎(jiǎng)可獲獎(jiǎng)金元,三等獎(jiǎng)可獲獎(jiǎng)金元,記顧客一次抽獎(jiǎng)所獲得的獎(jiǎng)金為,若商場(chǎng)希望的數(shù)學(xué)期望不超過(guò)元,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】試題分析:該幾何體上面是長(zhǎng)方體,下面是四棱柱;長(zhǎng)方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點(diǎn):三視圖和幾何體的體積.2.C【解析】
由復(fù)數(shù)的幾何意義可得表示復(fù)數(shù),對(duì)應(yīng)的兩點(diǎn)間的距離,由兩點(diǎn)間距離公式即可求解.【詳解】由復(fù)數(shù)的幾何意義可得,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,所以,其中,故選C【點(diǎn)睛】本題主要考查復(fù)數(shù)的幾何意義,由復(fù)數(shù)的幾何意義,將轉(zhuǎn)化為兩復(fù)數(shù)所對(duì)應(yīng)點(diǎn)的距離求值即可,屬于基礎(chǔ)題型.3.D【解析】
根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)?,且,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對(duì)空間想象能力要求較高,屬于中檔題.4.B【解析】
作出可行域,表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點(diǎn)與定點(diǎn)連線斜率,,,過(guò)與直線平行的直線斜率為-1,∴.故選:B.【點(diǎn)睛】本題考查簡(jiǎn)單的非線性規(guī)劃.解題關(guān)鍵是理解非線性目標(biāo)函數(shù)的幾何意義,本題表示動(dòng)點(diǎn)與定點(diǎn)連線斜率,由直線與可行域的關(guān)系可得結(jié)論.5.C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點(diǎn)睛】本題主要考查了集合的基本運(yùn)算,難度容易.6.A【解析】
由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時(shí)針旋轉(zhuǎn),得到向量的坐標(biāo),則對(duì)應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對(duì)應(yīng)點(diǎn)Z(0,1),
∴=(0,1),將繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到,
設(shè)=(a,b),,則,即,
又,解得:,∴,對(duì)應(yīng)復(fù)數(shù)為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.7.D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因?yàn)?,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點(diǎn)睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.8.D【解析】
圓心坐標(biāo)為,代入直線方程,再由乘1法和基本不等式,展開計(jì)算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當(dāng)且僅當(dāng)且即時(shí)取等號(hào),故選:.【點(diǎn)睛】本題考查最值的求法,注意運(yùn)用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時(shí)考查直線與圓的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.9.B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B10.A【解析】
根據(jù)分段函數(shù)的定義得,,則,再根據(jù)基本不等式構(gòu)造出相應(yīng)的所需的形式,可求得函數(shù)的最小值.【詳解】依題意得,,則,(當(dāng)且僅當(dāng),即時(shí)“”成立.此時(shí),,,的最小值為,故選:A.【點(diǎn)睛】本題考查求分段函數(shù)的最值,關(guān)鍵在于根據(jù)分段函數(shù)的定義得出,再由基本不等式求得最值,屬于中檔題.11.B【解析】
根據(jù)漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點(diǎn)睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎(chǔ)題.12.B【解析】
在二項(xiàng)展開式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含項(xiàng)的系數(shù).【詳解】的展開式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求得與關(guān)于軸對(duì)稱的函數(shù),將問(wèn)題轉(zhuǎn)化為與的圖象有交點(diǎn),即方程有解.對(duì)分成三種情況進(jìn)行分類討論,由此求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)殛P(guān)于軸對(duì)稱的函數(shù)為,因?yàn)楹瘮?shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),所以與的圖象有交點(diǎn),方程有解.時(shí)符合題意.時(shí)轉(zhuǎn)化為有解,即,的圖象有交點(diǎn),是過(guò)定點(diǎn)的直線,其斜率為,若,則函數(shù)與的圖象必有交點(diǎn),滿足題意;若,設(shè),相切時(shí),切點(diǎn)的坐標(biāo)為,則,解得,切線斜率為,由圖可知,當(dāng),即時(shí),,的圖象有交點(diǎn),此時(shí),與的圖象有交點(diǎn),函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),綜上可得,實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點(diǎn)以及對(duì)稱性,函數(shù)與方程等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題,解決問(wèn)題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識(shí).14.【解析】
利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡(jiǎn)求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】
直接根據(jù)復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則計(jì)算即可.【詳解】,.【點(diǎn)睛】本題主要考查復(fù)數(shù)的代數(shù)形式四則運(yùn)算法則的應(yīng)用.16.【解析】
根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標(biāo)代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點(diǎn)睛】本題考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)見解析;(2)【解析】
(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點(diǎn),∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點(diǎn),,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因?yàn)樗倪呅问蔷匦?,,,,設(shè)幾何體的體積為,則,∴,即:.【點(diǎn)睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計(jì)算能力.18.(1).(2).【解析】
(1)先根據(jù)空間直角坐標(biāo)系,求得向量和向量的坐標(biāo),再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個(gè)法向量和平面BCC1的一個(gè)法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答(1)因?yàn)锳B=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設(shè)平面BFC1的法向量為=(x1,y1,z1).因?yàn)椋?,=,則取x1=4,得平面BFC1的一個(gè)法向量為=(4,0,1).設(shè)平面BCC1的法向量為=(x2,y2,z2).因?yàn)椋?,?0,0,2),則取x2=得平面BCC1的一個(gè)法向量為=(,-1,0),所以cos〈〉==根據(jù)圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點(diǎn)睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.19.(1)(2)證明見解析【解析】
(1)分類討論,去絕對(duì)值求出函數(shù)的解析式,根據(jù)一次函數(shù)的性質(zhì),得出的單調(diào)性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡(jiǎn)后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.所以當(dāng)時(shí),取最小值.(2)證明:由(1)可知.要證明:,即證,因?yàn)?,,為正?shí)數(shù),所以.當(dāng)且僅當(dāng),即,,時(shí)取等號(hào),所以.【點(diǎn)睛】本題考查絕對(duì)值不等式和基本不等式的應(yīng)用,還運(yùn)用“乘1法”和分類討論思想,屬于中檔題.20.(1)證明見解析;(2).【解析】
(1)證明,得到平面,得到證明.(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,平面的一個(gè)法向量為,平面的一個(gè)法向量為,計(jì)算夾角得到答案.【詳解】(1)因?yàn)樗倪呅问橇庑?,且,所以是等邊三角形,又因?yàn)槭堑闹悬c(diǎn),所以,又因?yàn)?,,所以,又,,,所以,又,,所以平面,所以,又因?yàn)槭橇庑?,,所以,又,所以平面,所?(2)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,,,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,,平面與平面所成銳二面角的余弦值.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21.有的把握認(rèn)為顧客
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高性能計(jì)算環(huán)境下的工業(yè)控制實(shí)吋系統(tǒng)優(yōu)化
- 2025年甜品碗項(xiàng)目可行性研究報(bào)告
- 2025年微機(jī)核子枰單機(jī)控制器項(xiàng)目可行性研究報(bào)告
- 科技驅(qū)動(dòng)下的人才培養(yǎng)模式變革與創(chuàng)新教育發(fā)展
- 家裝材料的科技發(fā)展與品質(zhì)生活
- 2025年不銹鋼螺釘項(xiàng)目可行性研究報(bào)告
- 2025至2030年蔬菜緩釋肥料項(xiàng)目投資價(jià)值分析報(bào)告
- 企業(yè)社會(huì)責(zé)任傳播-第1篇-深度研究
- 廣播電臺(tái)市場(chǎng)細(xì)分策略-深度研究
- 2025至2030年中國(guó)玻璃細(xì)口瓶數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 診所規(guī)章制度匯編全套
- 2024年云南省中考英語(yǔ)題庫(kù)【歷年真題+章節(jié)題庫(kù)+模擬試題】
- 麻醉藥品、精神藥品月檢查記錄表
- 演示文稿國(guó)庫(kù)集中支付總流程圖
- 浙江省寧波市海曙區(qū)2022學(xué)年第一學(xué)期九年級(jí)期末測(cè)試科學(xué)試題卷(含答案和答題卡)
- 為了自由呼吸的教育
- 高考英語(yǔ)詞匯3500電子版
- 建院新聞社成立策劃書
- GB/T 19675.2-2005管法蘭用金屬?zèng)_齒板柔性石墨復(fù)合墊片技術(shù)條件
- 運(yùn)動(dòng)技能學(xué)習(xí)與控制課件第十三章動(dòng)作技能的保持和遷移
- 2023年春節(jié)后建筑施工復(fù)工復(fù)產(chǎn)專項(xiàng)方案
評(píng)論
0/150
提交評(píng)論