2025屆江西省宜春市豐城中學高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第1頁
2025屆江西省宜春市豐城中學高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第2頁
2025屆江西省宜春市豐城中學高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第3頁
2025屆江西省宜春市豐城中學高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第4頁
2025屆江西省宜春市豐城中學高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆江西省宜春市豐城中學高一數(shù)學第一學期期末學業(yè)水平測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某流行病調(diào)查中心的疾控人員針對該地區(qū)某類只在人與人之間相互傳染的疾病,通過現(xiàn)場調(diào)查與傳染源傳播途徑有關(guān)的蛛絲馬跡,根據(jù)傳播鏈及相關(guān)數(shù)據(jù),建立了與傳染源相關(guān)確診病例人數(shù)與傳染源感染后至隔離前時長t(單位:天)的模型:.已知甲傳染源感染后至隔離前時長為5天,與之相關(guān)確診病例人數(shù)為8;乙傳染源感染后至隔離前時長為8天,與之相關(guān)確診病例人數(shù)為20.若某傳染源感染后至隔離前時長為兩周,則與之相關(guān)確診病例人數(shù)約為()A.44 B.48C.80 D.1252.最小正周期為,且在區(qū)間上單調(diào)遞增的函數(shù)是()A.y=sinx+cosx B.y=sinx-cosxC.y=sinxcosx D.y=3.已知sin(α-π)+cos(π-α)A.-2 B.2C.-3 D.34.已知正弦函數(shù)f(x)的圖像過點,則的值為()A.2 B.C. D.15.鄭州地鐵1號線的開通運營,極大方便了市民的出行.某時刻從二七廣場站駛往博學路站的過程中,10個車站上車的人數(shù)統(tǒng)計如下:70,60,60,60,50,40,40,30,30,10.這組數(shù)據(jù)的平均數(shù),眾數(shù),90%分位數(shù)的和為()A.125 B.135C.165 D.1706.在我國古代數(shù)學名著《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑ABCD中,AB⊥平面BCD,且AB=BC=CD,則異面直線AC與BD所成角的余弦值為()A. B.-C.2 D.7.已知函數(shù)在[-2,1]上具有單調(diào)性,則實數(shù)k的取值范圍是()A.k≤-8 B.k≥4C.k≤-8或k≥4 D.-8≤k≤48.已知函數(shù)f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.設(shè)函數(shù)h(x)=min{f(x),g(x)},則函數(shù)h(x)的零點個數(shù)為()A.1 B.2C.3 D.49.如果直線l,m與平面滿足和,那么必有()A.且 B.且C.且 D.且10.酒駕是嚴重危害交通安全的違法行為.根據(jù)國家有關(guān)規(guī)定:駕駛?cè)搜褐械木凭看笥冢ɑ虻扔冢┖量?毫升,小于毫克/毫升的情況下駕駛機動車屬于飲酒駕車;含量大于(或等于)毫克/毫升的情況下駕駛機動車屬于醉酒駕車.假設(shè)某駕駛員一天晚上點鐘喝了一定量的酒后,其血液中酒精含量上升到毫克/毫升.如果在停止喝酒后,他血液中酒精含量以每小時的速度減少,則他次日上午最早()點(結(jié)果取整數(shù))開車才不構(gòu)成酒駕.(參考數(shù)據(jù):,)A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則_______.12.若函數(shù)y=loga(2-ax)在[0,1]上單調(diào)遞減,則a的取值范圍是________13.已知角的終邊經(jīng)過點,則的值是______.14.函數(shù)的最大值為___________.15.經(jīng)過,兩點的直線的傾斜角是__________.16.直線被圓截得弦長的最小值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)若函數(shù)在區(qū)間上存在零點,求正實數(shù)的取值范圍;(2)若,,使得成立,求正實數(shù)的取值范圍18.已知函數(shù)(且).(1)判斷的奇偶性,并予以證明;(2)求使得成立的的取值范圍.19.(1)計算(2)已知,求的值20.(1)若是的根,求的值(2)若,,且,,求的值21.已知函數(shù)是定義域為上的奇函數(shù),且(1)求的解析式;(2)用定義證明:在上增函數(shù).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)求得,由此求得的值.【詳解】依題意得,,,所以.故若某傳染源感染后至隔離前時長為兩周,則相關(guān)確診病例人數(shù)約為125.故選:D2、B【解析】選項、先利用輔助角公式恒等變形,再利用正弦函數(shù)圖像的性質(zhì)判斷周期和單調(diào)遞增區(qū)間即可,選項先利用二倍角的正弦公式恒等變形,再利用正弦函數(shù)圖像的性質(zhì)判斷周期和單調(diào)遞增區(qū)間即可,選項直接利用正切函數(shù)圖象的性質(zhì)去判斷即可.【詳解】對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上單調(diào)遞增,則選項錯誤;對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上為單調(diào)遞增,則選項正確;對于選項,,最小正周期為,單調(diào)遞增區(qū)間為,即,該函數(shù)在上為單調(diào)遞增,則選項錯誤;對于選項,,最小正周期為,在為單調(diào)遞增,則選項錯誤;故選:.3、B【解析】應用誘導公式及正余弦的齊次式,將題設(shè)等式轉(zhuǎn)化為-tanα-1【詳解】sin(α-π)+∴-tanα-1=-3tan故選:B.4、C【解析】由題意結(jié)合誘導公式有:.本題選擇C選項.5、D【解析】利用公式可求平均數(shù)和90%分位數(shù),再求出眾數(shù)后可得所求的和.【詳解】這組數(shù)據(jù)的平均數(shù)為,而,故90%分位數(shù),眾數(shù)為,故三者之和為,故選:D.6、A【解析】如圖所示,分別取,,,的中點,,,,則,,,或其補角為異面直線與所成角【詳解】解:如圖所示,分別取,,,的中點,,,,則,,,或其補角為異面直線與所成角設(shè),則,,,異面直線與所成角的余弦值為,故選:A【點睛】平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:①平移:平移異面直線中的一條或兩條,作出異面直線所成的角;②認定:證明作出的角就是所求異面直線所成的角;③計算:求該角的值,常利用解三角形;④取舍:由異面直線所成的角的取值范圍是,當所作的角為鈍角時,應取它的補角作為兩條異面直線所成的角7、C【解析】根據(jù)二次函數(shù)的單調(diào)性和對稱軸之間的關(guān)系,建立條件求解即可.【詳解】函數(shù)對稱軸為,要使在區(qū)間[-2,1]上具有單調(diào)性,則或,∴或綜上所述的范圍是:k≤-8或k≥4.故選:C.8、C【解析】畫圖可知四個零點分別為-1和3,和e,但注意到f(x)的定義域為x>0,故選C.9、A【解析】根據(jù)題設(shè)線面關(guān)系,結(jié)合平面的基本性質(zhì)判斷線線、線面、面面的位置關(guān)系.【詳解】由,則;由,則;由上條件,m與可能平行、相交,與有可能平行、相交.綜上,A正確;B,C錯誤,m與有可能相交;D錯誤,與有可能相交故選:A10、D【解析】根據(jù)題意可得不等式,解不等式可求得,由此可得結(jié)論.【詳解】假設(shè)經(jīng)過小時后,駕駛員開車才不構(gòu)成酒駕,則,即,,則,,次日上午最早點,該駕駛員開車才不構(gòu)成酒駕.故選:D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】直接利用二倍角的余弦公式求得cos2a的值【詳解】∵.故答案為:12、(1,2)【解析】分類討論得到當時符合題意,再令在[0,1]上恒成立解出a的取值范圍即可.【詳解】令,當時,為減函數(shù),為減函數(shù),不合題意;當時,為增函數(shù),為減函數(shù),符合題意,需要在[0,1]上恒成立,當時,成立,當時,恒成立,即,綜上.故答案為:(1,2).13、##【解析】根據(jù)三角函數(shù)定義得到,,進而得到答案.【詳解】角的終邊經(jīng)過點,,,.故答案為:.14、【解析】根據(jù)二次函數(shù)的性質(zhì),結(jié)合給定的區(qū)間求最大值即可.【詳解】由,則開口向上且對稱軸為,又,∴,,故函數(shù)最大值為.故答案為:.15、【解析】經(jīng)過,兩點的直線的斜率是∴經(jīng)過,兩點的直線的傾斜角是故答案為16、【解析】先求直線所過定點,根據(jù)幾何關(guān)系求解【詳解】,由解得所以直線過定點A(1,1),圓心C(0,0),由幾何關(guān)系知當AC與直線垂直時弦長最小.弦長最小值為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)結(jié)合函數(shù)的單調(diào)性及零點存在定理可得結(jié)論;(2)由題意可得在,上,,由函數(shù)的單調(diào)性求得最值,解不等式可得所求范圍【小問1詳解】函數(shù),因為在區(qū)間上單調(diào)遞減,又,所以在區(qū)間上單調(diào)遞減,所以在區(qū)間上單調(diào)遞減,若在區(qū)間上存在零點,則.【小問2詳解】存在,,,使得成立,等價為在,上,由在,遞增,可得的最小值為,又,所以在,遞減,可得的最大值為,由,解得,所以;綜上可得,的范圍是18、(1)見解析;(2)見解析【解析】【試題分析】(I)先求得函數(shù)的定義域,然后利用奇偶性的定義判斷出函數(shù)為奇函數(shù).(2)化簡原不等式,并按兩種情況來解不等式,由此求得的取值范圍.【試題解析】(Ⅰ)由得定義域為是奇函數(shù)(Ⅱ)由得①當時,,解得②當時,,解得當時的取值范圍是;當時的取值范圍是【點睛】本題主要考查函數(shù)的性質(zhì),考查函數(shù)的定義域和奇偶性,考查不等式的求解方法,考查分類討論的數(shù)學思想.要判斷一個函數(shù)的奇偶性,首先要求函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則該函數(shù)為非奇非偶函數(shù).含有參數(shù)不等式的求解,往往需要對參數(shù)進行分類討論.19、(1);(2)3.【解析】(1)由題意結(jié)合對數(shù)的運算法則和對數(shù)恒等式的結(jié)論可得原式的值為;(2)令,計算可得原式.試題解析:(1);(2)設(shè)則,所以

.20、(1);(2)【解析】(1)先求出,再通過誘導公式及切化弦化簡原式后再代值即可;(2)通過角的范圍及已知的三角函數(shù)值求出和,再運用正弦的兩角差的公式計算即可.【詳解】(1)方程解得或,因為為其解,所以.則原式由于,所以原式.(2)因為,所以,又因為,所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論