版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省遼寧省營(yíng)口市開發(fā)區(qū)第一高級(jí)中學(xué)2025屆高二上數(shù)學(xué)期末預(yù)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平行六面體中,點(diǎn)P在上,若,則()A. B.C. D.2.函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.3.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎(COVID—19)疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無(wú)法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽(yáng)性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽(yáng)性的概率均為p(0<p<1)且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶”的概率為f(p),當(dāng)p=p0時(shí),f(p)最大,則p0=()A. B.C. D.4.設(shè)為等差數(shù)列的前項(xiàng)和,,,則A.-6 B.-4C.-2 D.25.記等差數(shù)列的前n項(xiàng)和為,若,,則等于()A.5 B.31C.38 D.416.中共一大會(huì)址、江西井岡山、貴州遵義、陜西延安是中學(xué)生的幾個(gè)重要的研學(xué)旅行地.某中學(xué)在校學(xué)生人,學(xué)校團(tuán)委為了了解本校學(xué)生到上述紅色基地研學(xué)旅行的情況,隨機(jī)調(diào)查了名學(xué)生,其中到過(guò)中共一大會(huì)址或井岡山研學(xué)旅行的共有人,到過(guò)井岡山研學(xué)旅行的人,到過(guò)中共一大會(huì)址并且到過(guò)井岡山研學(xué)旅行的恰有人,根據(jù)這項(xiàng)調(diào)查,估計(jì)該學(xué)校到過(guò)中共一大會(huì)址研學(xué)旅行的學(xué)生大約有()人A. B.C. D.7.已知函數(shù)的導(dǎo)數(shù)為,則等于()A.0 B.1C.2 D.48.設(shè)是雙曲線的一個(gè)焦點(diǎn),,是的兩個(gè)頂點(diǎn),上存在一點(diǎn),使得與以為直徑的圓相切于,且是線段的中點(diǎn),則的漸近線方程為A. B.C. D.9.已知是定義在上的函數(shù),且對(duì)任意都有,若函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,且,則()A. B.C. D.10.設(shè)是公差的等差數(shù)列,如果,那么()A. B.C. D.11.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點(diǎn) D.2為函數(shù)的極大值點(diǎn)12.已知雙曲線的離心率為,則雙曲線C的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某n重伯努利試驗(yàn)中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______14.拋物線的聚焦特點(diǎn):從拋物線的焦點(diǎn)發(fā)出的光經(jīng)過(guò)拋物線反射后,光線都平行于拋物線的對(duì)稱軸.另一方面,根據(jù)光路的可逆性,平行于拋物線對(duì)稱軸的光線射向拋物線后的反射光線都會(huì)匯聚到拋物線的焦點(diǎn)處.已知拋物線,一條平行于拋物線對(duì)稱軸的光線從點(diǎn)向左發(fā)出,先經(jīng)拋物線反射,再經(jīng)直線反射后,恰好經(jīng)過(guò)點(diǎn),則該拋物線的標(biāo)準(zhǔn)方程為___________.15.已知遞增數(shù)列共有2021項(xiàng),且各項(xiàng)均不為零,,如果從中任取兩項(xiàng),當(dāng)時(shí),仍是數(shù)列中的項(xiàng),則的范圍是________________,數(shù)列的所有項(xiàng)和________16.以雙曲線的右焦點(diǎn)為圓心,為半徑的圓與的一條漸近線交于兩點(diǎn),若,則雙曲線的離心率為_________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)經(jīng)過(guò)點(diǎn),;(2)長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,且經(jīng)過(guò)點(diǎn)18.(12分)已知,,且,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面,,是的中點(diǎn),,.(1)證明:;(2)求直線與平面所成角的正弦值.20.(12分)已知函數(shù)在處取得極值確定a的值;若,討論的單調(diào)性21.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點(diǎn).(1)證明:直線面DEF;(2)求二面角的余弦值.22.(10分)如圖,在四棱錐中,平面,底面為正方形,且,點(diǎn)在棱上,且直線與平面所成角的正弦值為(1)求點(diǎn)的位置;(2)求點(diǎn)到平面的距離
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用空間向量基本定理,結(jié)合空間向量加法的法則進(jìn)行求解即可.【詳解】因?yàn)?,,所以有,因此,故選:C2、B【解析】求出函數(shù)的定義域,解不等式可得出函數(shù)的單調(diào)遞增區(qū)間.【詳解】函數(shù)的定義域?yàn)?,由,可?因此,函數(shù)的單調(diào)遞增區(qū)間為.故選:B.3、A【解析】解設(shè)事件A為:檢測(cè)了5人確定為“感染高危戶”,設(shè)事件B為:檢測(cè)了6人確定為“感染高危戶”,則,再利用基本不等式法求解.【詳解】解:設(shè)事件A為:檢測(cè)了5人確定為“感染高危戶”,設(shè)事件B為:檢測(cè)了6人確定為“感染高危戶”,則,,所以,令,則,,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,即,故選:A4、A【解析】由已知得解得故選A考點(diǎn):等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式5、A【解析】設(shè)等差數(shù)列的公差為d,首先根據(jù)題意得到,再解方程組即可得到答案.【詳解】解:設(shè)等差數(shù)列的公差為d,由題知:,解得.故選:A.6、B【解析】作出韋恩圖,設(shè)調(diào)查的學(xué)生中去過(guò)中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù)為,根據(jù)題意求出的值,由此可得出該學(xué)校到過(guò)中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù).【詳解】如下圖所示,設(shè)調(diào)查的學(xué)生中去過(guò)中共一大會(huì)址研學(xué)旅行的學(xué)生人數(shù)為,由題意可得,解的,因此,該學(xué)校到過(guò)中共一大會(huì)址研學(xué)旅行的學(xué)生的人數(shù)為.故選:B.【點(diǎn)睛】本題考查韋恩圖的應(yīng)用,同時(shí)也考查了利用分層抽樣求樣本容量,考查計(jì)算能力,屬于基礎(chǔ)題.7、A【解析】先對(duì)函數(shù)求導(dǎo),然后代值計(jì)算即可【詳解】因?yàn)?,所?故選:A8、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關(guān)系求解.【詳解】設(shè)另一焦點(diǎn)為,連接,由于是圓的切線,則,且,又是的中點(diǎn),則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單的幾何性質(zhì),屬于中檔題.9、D【解析】令,代入可得,即得,再由函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,判斷得函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,即,則化簡(jiǎn)可得,即函數(shù)的周期為,從而代入求解.【詳解】令,得,即,所以,因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對(duì)稱,所以函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,即,所以,即,可得,則,故選:D.第II卷(非選擇題10、D【解析】由已知可得,即可得解.【詳解】由已知可得.故選:D.11、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對(duì)于A,在區(qū)間,,故A不正確;對(duì)于B,在區(qū)間,,故B不正確;對(duì)于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點(diǎn),故C不正確,D正確.故選:D12、B【解析】根據(jù)a的值和離心率可求得b,從而求得漸近線方程.【詳解】由雙曲線的離心率為,知,則,即有,故,所以雙曲線C的漸近線方程為,即,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、##0.2【解析】根據(jù)二項(xiàng)分布的均值和方差的計(jì)算公式可求解【詳解】依題意得X服從二項(xiàng)分布,則,解得,故答案為:14、【解析】根據(jù)拋物線的聚焦特點(diǎn),經(jīng)過(guò)拋物線后經(jīng)過(guò)拋物線焦點(diǎn),再經(jīng)直線反射后經(jīng)過(guò)點(diǎn),則根據(jù)反射特點(diǎn),列出相關(guān)方程,解出方程即可.【詳解】設(shè)光線與拋物線的交點(diǎn)為,拋物線的焦點(diǎn)為,則可得:拋物線的焦點(diǎn)為:則直線的方程為:設(shè)直線與直線的交點(diǎn)為,則有:解得:則過(guò)點(diǎn)且垂直于的直線的方程為:根據(jù)題意可知:點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在直線上設(shè)點(diǎn),的中點(diǎn)為,則有:直線垂直于,則有:點(diǎn)在直線上,則有:點(diǎn)在直線上,則有:化簡(jiǎn)得:又故故答案為:【點(diǎn)睛】直線關(guān)于直線對(duì)稱對(duì)稱,利用中點(diǎn)坐標(biāo)公式和直線與直線垂直的特點(diǎn)建立方程,根據(jù)題意列出隱含的方程是關(guān)鍵15、①.②.1011【解析】根據(jù)題意得到,得到,,,,進(jìn)而得到,從而即可求得的值.【詳解】由題意,遞增數(shù)列共有項(xiàng),各項(xiàng)均不為零,且,所以,所以的范圍是,因?yàn)闀r(shí),仍是數(shù)列中的項(xiàng),即,且上述的每一項(xiàng)均在數(shù)列中,所以,,,,即,所以,所以.故答案為:;.16、【解析】由題意可得,化簡(jiǎn)整理得到,進(jìn)而可求出結(jié)果.【詳解】因?yàn)殡p曲線的一個(gè)焦點(diǎn)到其一條漸近線為,所有由題意可得,即,則,所以離心率,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)或.【解析】(1)由已知可得,,且焦點(diǎn)在軸上,進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程;(2)由已知可得,,此時(shí)焦點(diǎn)在軸上,或,,此時(shí)焦點(diǎn)在軸上,進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程;【小問(wèn)1詳解】解:橢圓經(jīng)過(guò)點(diǎn),,,,,且焦點(diǎn)在軸上,橢圓的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】解:長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,且經(jīng)過(guò)點(diǎn),當(dāng)點(diǎn)在長(zhǎng)軸上時(shí),,,此時(shí)焦點(diǎn)在軸上,此時(shí)橢圓的標(biāo)準(zhǔn)方程為;當(dāng)點(diǎn)在短軸上時(shí),,,此時(shí)焦點(diǎn)在軸上,此時(shí)橢圓的標(biāo)準(zhǔn)方程.綜合得橢圓的方程為或.18、.【解析】求得集合,根據(jù),分和,兩種情況討論,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】由題意,集合當(dāng)時(shí),即,解得,此時(shí)滿足,當(dāng)時(shí),要使得,則或,當(dāng)時(shí),可得,即,此時(shí),滿足;當(dāng)時(shí),可得,即,此時(shí),不滿足,綜上可知,實(shí)數(shù)的取值范圍為.19、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,分別求出向量和,證明即可;(2)先求出和平面的法向量,然后利用公式求出,則直線與平面所成角的正弦值即為.【小問(wèn)1詳解】證明:∵,,∴△≌△,∴,設(shè),在△中,由余弦定理得,即,則,即,,連接交于點(diǎn),分別以,為軸、軸,過(guò)作軸,建立如圖空間直角坐標(biāo)系,則,,,,,,的中點(diǎn),則,,∵,∴.【小問(wèn)2詳解】由(1)可知,,,,設(shè)平面的法向量為,則,即,令,則,即,則,記直線與平面所成角為,.20、(1)(2)在和內(nèi)為減函數(shù),在和內(nèi)為增函數(shù)【解析】(1)對(duì)求導(dǎo)得,因?yàn)樵谔幦〉脴O值,所以,即,解得;(2)由(1)得,,故,令,解得或,當(dāng)時(shí),,故為減函數(shù),當(dāng)時(shí),,故為增函數(shù),當(dāng)時(shí),,故為減函數(shù),當(dāng)時(shí),,故為增函數(shù),綜上所知:和是函數(shù)單調(diào)減區(qū)間,和是函數(shù)的單調(diào)增區(qū)間.21、(1)證明見解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點(diǎn),為軸,豎直向上為軸建立空間直角坐標(biāo)系,利用向量法計(jì)算與平面的法向量的數(shù)量積為0即可得證;(2)分別計(jì)算出平面和平面的法向量,然后利用向量夾角公式即可求解.【小問(wèn)1詳解】證明:因?yàn)槠矫嫫矫鍭BCD,平面平面ABCD,且,所以平面ABCD,連接BD,則等邊三角形,所以,以為原點(diǎn),為軸,豎直向上為軸建立如圖所示的空間直角坐標(biāo)系,則,設(shè)為平面的法向量,因?yàn)椋瑒t有,取,又因?yàn)?,所以,因?yàn)槠矫?,所以平面;【小?wèn)2詳解】解:分別設(shè)為平面和平面的法向量,因?yàn)?,則有,取,因,則有,取,所以,由圖可知二面角為銳二面角,所以二面角的余弦值為.22、(1)為棱中點(diǎn)(2)【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工作總結(jié)之法院實(shí)習(xí)自我總結(jié)
- 2024年兩性健康項(xiàng)目投資申請(qǐng)報(bào)告
- 國(guó)家開放大學(xué)《教育心理學(xué)》形考作業(yè)1-4答案
- 個(gè)人升職報(bào)告-文書模板
- 銀行合規(guī)管理制度實(shí)施優(yōu)化
- 酒店餐飲服務(wù)操作規(guī)范制度
- 2024年中國(guó)工業(yè)涂料行業(yè)市場(chǎng)現(xiàn)狀及發(fā)展趨勢(shì)分析
- 《讓心靈去旅行》課件
- 《郵政營(yíng)業(yè)服務(wù)規(guī)范》課件
- 吉林省長(zhǎng)春市朝陽(yáng)區(qū)2024屆九年級(jí)上學(xué)期期末質(zhì)量監(jiān)測(cè)數(shù)學(xué)試卷(含解析)
- TSG 23-2021 氣瓶安全技術(shù)規(guī)程 含2024年第1號(hào)修改單
- 2024-2030年聚甲基丙烯酸甲酯(PMMA)行業(yè)市場(chǎng)現(xiàn)狀供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 藥物常識(shí)智慧樹知到答案2024年江西師范大學(xué)
- 河南省安陽(yáng)市龍安區(qū)2023-2024學(xué)年五年級(jí)上學(xué)期期末英語(yǔ)試題
- 彈性力學(xué)仿真軟件:Altair HyperWorks:HyperStudy設(shè)計(jì)研究與優(yōu)化教程
- 教科版小學(xué)科學(xué)六年級(jí)上冊(cè)期末考試試卷(含答案)
- 北京課改版小學(xué)英語(yǔ)五年級(jí)上冊(cè)-知識(shí)清單
- 2024鹽酸羅哌卡因注射液市場(chǎng)趨勢(shì)分析報(bào)告
- 通訊員培訓(xùn)講課
- “勞動(dòng)、人事、工資”三項(xiàng)制度改革
- 2024年人教版小學(xué)五年級(jí)語(yǔ)文(上冊(cè))期末試卷及答案
評(píng)論
0/150
提交評(píng)論