版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆福建省福清市數(shù)學(xué)高二上期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為雙曲線的左,右頂點,點P在雙曲線C上,為等腰三角形,且頂角為,則雙曲線C的離心率為()A. B.C.2 D.2.在等差數(shù)列中,為其前n項和,,則()A.55 B.65C.15 D.603.“”是“直線和直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.直線在軸上的截距為()A.3 B.C. D.5.已知M、N為橢圓上關(guān)于短軸對稱的兩點,A、B分別為橢圓的上下頂點,設(shè)、分別為直線的斜率,則的最小值為()A. B.C. D.6.已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個焦點為頂點的四邊形的面積為16,則橢圓的方程為A. B.C. D.7.已知雙曲線的焦距為,且雙曲線的一條漸近線與直線平行,則雙曲線的方程為()A. B.C. D.8.原點到直線的距離的最大值為()A. B.C. D.9.如圖,已知、分別是橢圓的左、右焦點,點、在橢圓上,四邊形是梯形,,且,則的面積為()A. B.C. D.10.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.如圖,是函數(shù)的部分圖象,且關(guān)于直線對稱,則()A. B.C. D.12.執(zhí)行如圖所示的流程圖,則輸出k的值為()A.3 B.4C.5 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線C:,經(jīng)過點P(4,1)的直線l與拋物線C相交于A,B兩點,且點P恰為AB的中點,F(xiàn)為拋物線的焦點,則______14.設(shè),為實數(shù),已知經(jīng)過點的橢圓與雙曲線有相同的焦點,則___________.15.橢圓的左、右焦點分別為,,為坐標原點,則以下說法正確的是()A.過點的直線與橢圓交于,兩點,則的周長為8B.橢圓上存在點,使得C.橢圓的離心率為D.為橢圓上一點,為圓上一點,則點,的最大距離為316.將數(shù)列{n}按“第n組有n個數(shù)”的規(guī)則分組如下:(1),(2,3),(4,5,6),…,則第22組中的第一個數(shù)是_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的展開式中只有第五項的二項式系數(shù)最大.(1)求該展開式中有理項的項數(shù);(2)求該展開式中系數(shù)最大的項.18.(12分)若存在實常數(shù)k和b,使得函數(shù)和對其公共定義域上的任意實數(shù)x都滿足:和恒成立,則稱此直線y=kx+b為和的“隔離直線”.已知函數(shù),.(1)證明函數(shù)在內(nèi)單調(diào)遞增;(2)證明和之間存在“隔離直線”,且b的最小值為-4.19.(12分)如圖,已知正方體的棱長為,,分別是棱與的中點.(1)求以,,,為頂點的四面體的體積;(2)求異面直線和所成角的大小.20.(12分)2020年10月,中共中央辦公廳、國務(wù)院辦公廳印發(fā)了《關(guān)于全面加強和改進新時代學(xué)校體育工作的意見》,某地積極開展中小學(xué)健康促進行動,發(fā)揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分數(shù),規(guī)定:考生須參加立定跳遠、擲實心球、一分鐘跳繩三項測試,其中一分鐘跳繩滿分20分,某校為掌握九年級學(xué)生一分鐘跳繩情況,隨機抽取了100名學(xué)生測試,其一分一分鐘跳繩個數(shù)成績(分)1617181920頻率(1)若每分鐘跳繩成績不足18分,則認為該學(xué)生跳繩成績不及格,求在進行測試的100名學(xué)生中跳繩成績不及格的人數(shù)為多少?(2)該學(xué)校決定由這次跳繩測試一分鐘跳繩個數(shù)在205以上(包括205)的學(xué)生組成“小小教練員"團隊,小明和小華是該團隊的成員,現(xiàn)學(xué)校要從該團隊中選派2名同學(xué)參加某跳繩比賽,求小明和小華至少有一人被選派的概率21.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(1)求證:平面MND⊥平面PCD;(2)求點P到平面MND的距離22.(10分)已知斜率為1的直線交拋物線:()于,兩點,且弦中點的縱坐標為2.(1)求拋物線的標準方程;(2)記點,過點作兩條直線,分別交拋物線于,(,不同于點)兩點,且的平分線與軸垂直,求證:直線的斜率為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)給定條件求出點P的坐標,再代入雙曲線方程計算作答.【詳解】由雙曲線對稱性不妨令點P在第一象限,過P作軸于B,如圖,因為等腰三角形,且頂角為,則有,,有,于是得,即點,因此,,解得,所以雙曲線C的離心率為.故選:A2、B【解析】根據(jù)等差數(shù)列求和公式結(jié)合等差數(shù)列的性質(zhì)即可求得.【詳解】解析:因為為等差數(shù)列,所以,即,.故選:B3、A【解析】因為直線和直線垂直,所以或,再根據(jù)充分必要條件的定義判斷得解.【詳解】因為“直線和直線垂直,所以或.當(dāng)時,直線和直線垂直;當(dāng)直線和直線垂直時,不一定成立.所以是直線和直線垂直的充分不必要條件,故選:A4、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為3.故選:A5、A【解析】利用為定值即可獲解.【詳解】設(shè)則又,所以所以當(dāng)且僅當(dāng),即,取等故選:A6、D【解析】由題意,雙曲線的漸近線方程為,∵以這四個交點為頂點的四邊形為正方形,其面積為16,故邊長為4,∴(2,2)在橢圓C:上,∴,∵,∴,∴,∴∴橢圓方程為:.故選D.考點:橢圓的標準方程及幾何性質(zhì);雙曲線的幾何性質(zhì).7、B【解析】根據(jù)焦點在x軸上的雙曲線漸近線斜率為±可求a,b關(guān)系,再結(jié)合a,b,c關(guān)系即可求解﹒【詳解】∵雙曲線1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴雙曲線的方程為故選:B8、C【解析】求出直線過的定點,當(dāng)時,原點到直線距離最大,則可求出原點到直線距離的最大值;【詳解】因為可化為,所以直線過直線與直線交點,聯(lián)立可得所以直線過定點,當(dāng)時,原點到直線距離最大,最大距離即為,此時最大值為,故選:C.9、A【解析】設(shè)點關(guān)于原點的對稱點為點,連接、,分析可知、、三點共線,設(shè)點、,設(shè)直線的方程為,分析可知,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,求出的值,可得出的值,再利用三角形的面積公式可求得結(jié)果.【詳解】設(shè)點關(guān)于原點的對稱點為點,連接、,如下圖所示:因為為、的中點,則四邊形為平行四邊形,可得且,因為,故、、三點共線,設(shè)、,易知點,,,由題意可知,,可得,若直線與軸重合,設(shè),,則,不合乎題意;設(shè)直線的方程為,聯(lián)立,可得,由韋達定理可得,得,,則,可得,故,因此,.故選:A.10、B【解析】對求導(dǎo),取得函數(shù)在上有極值的等價條件,再根據(jù)充分條件和必要條件的定義進行判斷即可【詳解】解:,則,令,可得,當(dāng)時,,當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因為,但是由推不出,因此是函數(shù)在上有極值的必要不充分條件故選:B11、C【解析】先根據(jù)條件確定為函數(shù)的極大值點,得到的值,再根據(jù)圖像的單調(diào)性和導(dǎo)數(shù)幾何意義得到和的正負即可判斷.【詳解】根據(jù)題意得,為函數(shù)部分函數(shù)的極大值點,所以,又因為函數(shù)在單調(diào)遞增,由圖像可知處切線斜率為銳角,根據(jù)導(dǎo)數(shù)的幾何意義,所以,又因為函數(shù)在單調(diào)遞增,由圖像可知處切線斜率為鈍角,根據(jù)導(dǎo)數(shù)的幾何意義所以.即.故選:C.12、B【解析】根據(jù)程序框圖運行程序,直到滿足,輸出結(jié)果即可.【詳解】按照程序框圖運行程序,輸入,則,,不滿足,循環(huán);,,不滿足,循環(huán);,,不滿足,循環(huán);,,滿足,輸出結(jié)果:故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、9【解析】過A、、作準線的垂線且分別交準線于點、、,根據(jù)拋物線的定義可知,由梯形的中位線的性質(zhì)得出,進而可求出的結(jié)果.【詳解】由拋物線,可知,則,所以拋物線的焦點坐標為,如圖,過點A作垂直于準線交準線于,過點作垂直于準線交準線于,過點作垂直于準線交準線于,由拋物線的定義可得,再根據(jù)為線段的中點,而四邊形為梯形,由梯形的中位線可知,則,所以.故答案為:9.14、1【解析】由點P在橢圓上,可得的值,再根據(jù)橢圓與雙曲線有相同的焦點即可求解.【詳解】解:因為點在橢圓上,所以,解得,所以橢圓方程為,又橢圓與雙曲線有相同的焦點,所以,解得,故答案為:1.15、ABD【解析】結(jié)合橢圓定義判斷A選項的正確性,結(jié)合向量數(shù)量積的坐標運算判斷B選項的正確性,直接法求得橢圓的離心率,由此判斷C選項的正確性,結(jié)合兩點間距離公式判斷D選項的正確性.【詳解】對于選項:由橢圓定義可得:,因此的周長為,所以選項正確;對于選項:設(shè),則,且,又,,所以,,因此,解得,,故選項正確;對于選項:因為,,所以,即,所以離心率,所以選項錯誤;對于選項:設(shè),,則點到圓的圓心的距離為,因為,所以,所以選項正確,故選:ABD16、【解析】由已知,第組中最后一個數(shù)即為前組數(shù)的個數(shù)和,由此可求得第21組的最后一個數(shù),從而就可得第22組的第一個數(shù).【詳解】由條件可知,第21組的最后一個數(shù)為,所以第22組的第1個數(shù)為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)和【解析】(1)先求出,再寫出二項式展開式的通項,令即可求解;(2)設(shè)第項系數(shù)最大,則,即可解得的值,進而可得展開式中系數(shù)最大的項.【詳解】(1)由題意可得:,得,的展開式通項為,,要求展開式中有理項,只需令,所以所以有理項有5項,(2)設(shè)第項系數(shù)最大,則,即,即,解得:,因為,所以或所以,所以展開式中系數(shù)最大的項為和.【點睛】解二項式的題關(guān)鍵是求二項式展開式的通項,求有理項需要讓的指數(shù)位置是整數(shù),求展開式中系數(shù)最大的項需要滿足第項的系數(shù)大于等于第項的系數(shù),第項的系數(shù)大于等于第項的系數(shù),屬于中檔題18、(1)見解析(2)見解析【解析】(1)由導(dǎo)數(shù)得出在上的單調(diào)性;(2)設(shè)和之間的隔離直線為y=kx+b,由題設(shè)條件得出對任意恒成立,再由二次函數(shù)的性質(zhì)求解即可.【小問1詳解】,當(dāng)時,在上單調(diào)遞增在內(nèi)單調(diào)遞增【小問2詳解】設(shè)和之間的隔離直線為y=kx+b則對任意恒成立,即對任意恒成立由對任意恒成立,得當(dāng)時,則有符合題意;當(dāng)時,則有對任意恒成立的對稱軸為又的對稱軸為即故和之間存在“隔離直線”,且b的最小值為-4.【點睛】關(guān)鍵點睛:在解決問題一時,求了一階導(dǎo)得不了函數(shù)的單調(diào)性,再次求導(dǎo)得,進而得出在恒成立,得在上的單調(diào)性.19、(1)(2)【解析】(1)由題意可知該四面體為以為底面,以為高的四面體,可得四面體體積;(2)連接,,可得即為異面直線和所成的角的平面角,根據(jù)余弦定理可得角的大小.【小問1詳解】解:連接,,,以,,,為頂點的四面體即為三棱錐,底面的面積,高,則其體積;【小問2詳解】解:連接,,,則即為異面直線和所成的角的平面角,在中,,,,則,故,即和所成的角的的大小為.20、(1)14人;(2).【解析】(1)根據(jù)頻率直方表區(qū)間成績及其對應(yīng)的頻率,即可求每分鐘跳繩成績不足18分的人數(shù).(2)由表格數(shù)據(jù)求出一分鐘跳繩個數(shù)在205以上(包括205)的學(xué)生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小華至少有一個被選派的情況,由古典概型的概率求法即可得小明和小華至少有一人被選派的概率.【詳解】(1)由表可知,每分鐘跳繩成績不足18分,即為成績是16分或17分,在進行測試的100名學(xué)生中跳繩成績不及格人數(shù)為:人)(2)一分鐘跳繩個數(shù)在205以上(包括205)的學(xué)生頻率為,其人數(shù)為:(人),記小明為,小華為,其余四人為,則在這六人中選兩人參加比賽的所有情況為:,共15種,其中小明和小華至少有一個被選派的情況有:,共9種,小明和小華至少有一人被選派的概率為:.21、(1)見解析;(2)【解析】(1)作出如圖所示空間直角坐標系,根據(jù)題中數(shù)據(jù)可得、、的坐標,利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點到平面的距離公式加以計算即可得到點到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設(shè),,是平面的一個法向量,可得,取,得,,,,是平面的一個法向量,同理可得,1,是平面的一個法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個法向量,,2,,得,點到平面的距離22、(1);(2)見解析.【解析】(1)涉及中點弦,用點差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 軍事行業(yè)安全工作總結(jié)
- 構(gòu)建良好班級氛圍的培訓(xùn)總結(jié)
- 《新腦血管病的預(yù)防》課件
- 2024年江蘇省泰州市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年江西省景德鎮(zhèn)市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2021年青海省西寧市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2023年湖北省宜昌市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年河南省洛陽市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 2024年云南省麗江市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 《危險貨物運輸包裝》課件
- 分布式光伏發(fā)電項目計劃書
- 水土保持方案投標文件技術(shù)部分
- 2024-2025學(xué)年廣東省肇慶鼎湖中學(xué)高三上學(xué)期9月考試英語試題(含答案)
- 專題3-6 雙曲線的離心率與常用二級結(jié)論【12類題型】(原卷版)-A4
- 黑龍江省哈爾濱市2023-2024學(xué)年七年級上學(xué)期期末統(tǒng)考學(xué)業(yè)水平調(diào)研測試語文試卷(解析版)
- 2024年人力資源年度工作總結(jié)參考(2篇)
- DB52T 1776.1-2023 耕地質(zhì)量等別評價 第1部分:評價規(guī)范
- 社工個人工作述職報告
- 《人力資源管理》大學(xué)期末測試題庫500題(含答案)
- 加盟店鋪轉(zhuǎn)手合同
- 領(lǐng)導(dǎo)年終總結(jié)匯報工作
評論
0/150
提交評論