版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河北省滄州市滄縣中學2025屆高二上數(shù)學期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是公差為3的等差數(shù)列.若,,成等比數(shù)列,則的前10項和()A.165 B.138C.60 D.302.設(shè),分別為具有公共焦點與橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為A. B.1C.2 D.不確定3.已知雙曲線上的點到的距離為15,則點到點的距離為()A.7 B.23C.5或25 D.7或234.球O為三棱錐的外接球,和都是邊長為的正三角形,平面PBC平面ABC,則球的表面積為()A. B.C. D.5.設(shè)拋物線的焦點為F,準線為l,P為拋物線上一點,,A為垂足.如果直線AF的斜率是,那么()A B.C.16 D.86.已知,,則在上的投影向量為()A.1 B.C. D.7.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.8.已知等差數(shù)列且,則數(shù)列的前13項之和為()A.26 B.39C.104 D.529.設(shè)數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.10.設(shè)函數(shù)若函數(shù)有兩個零點,則實數(shù)m的取值范圍是()A. B.C. D.11.過點且與原點距離最大的直線方程是()A. B.C. D.12.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面上給定相異兩點A,B,點P滿足,則當且時,P點的軌跡是一個圓,我們稱這個圓為阿波羅尼斯圓.已知橢圓的離心率,A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點P滿足,若的面積的最大值為3,則面積的最小值為___________.14.將集合且中所有的元素從小到大排列得到的數(shù)列記為,則___________(填數(shù)值).15.在空間直角坐標系中,已知向量,則在軸上的投影向量為________.16.設(shè),分別是橢圓C:左、右焦點,點M為橢圓C上一點且在第一象限,若為等腰三角形,則M的坐標為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點.過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值18.(12分)已知(1)若函數(shù)在上有極值,求實數(shù)a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數(shù)的底數(shù))19.(12分)在正方體中,、、分別是、、的中點(1)證明:平面平面;(2)證明:20.(12分)如圖,在直三棱柱中,,,,點是的中點.(1)求證:;(2)求證:平面.21.(12分)已知為坐標原點,橢圓:的左、右焦點分別為,,右頂點為,上頂點為,若,,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為求橢圓的標準方程;過該橢圓的右焦點作兩條互相垂直的弦與,求的取值范圍22.(10分)某情報站有.五種互不相同的密碼,每周使用其中的一種密碼,且每周都是從上周末使用的四種密碼中等可能地隨機選用一種.設(shè)第一周使用密碼,表示第周使用密碼的概率(1)求;(2)求證:為等比數(shù)列,并求的表達式
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由等差數(shù)列的定義與等比數(shù)列的性質(zhì)求得首項,然后由等差數(shù)列的前項和公式計算【詳解】因為,,成等比數(shù)列,所以,所以,解得,所以故選:A2、C【解析】根據(jù)題意,設(shè)它們共同的焦距為2c、橢圓的長軸長2a、雙曲線的實軸長為2m,由橢圓和雙曲線的定義及勾弦定理建立關(guān)于a、c、m的方程,聯(lián)解可得a2+m2=2c2,再根據(jù)離心率的定義求解【詳解】由題意設(shè)焦距為2c,橢圓的長軸長2a,雙曲線的實軸長為2m,設(shè)P在雙曲線的右支上,由雙曲線的定義得|PF1|﹣|PF2|=2m①由橢圓的定義|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④將④代入③,化簡得a2+m2=2c2,即,可得,所以=.故選:C3、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點坐標,根據(jù)雙曲線的定義知,,而,所以或故選:D【點睛】本題主要考查了雙曲線的定義及其應(yīng)用,其中解答中熟記雙曲線的定義,列出方程是解答的關(guān)鍵,著重考查推理與運算能力,屬于基礎(chǔ)題.4、B【解析】取中點為T,以及的外心為,的外心為,依據(jù)平面平面可知為正方形,然后計算外接球半徑,最后根據(jù)球表面積公式計算.【詳解】設(shè)中點為T,的外心為,的外心為,如圖由和均為邊長為的正三角形則和的外接圓半徑為,又因為平面PBC平面ABC,所以平面,可知且,過分別作平面、平面的垂線相交于點即為三棱錐的外接球的球心,且四邊形是邊長為的正方形,所以外接球半徑,則球的表面積為,故選:B5、D【解析】由題可得方程,進而可得點坐標及點坐標,利用拋物線定義即求【詳解】∵拋物線方程為,∴焦點F(2,0),準線l方程為x=?2,∵直線AF的斜率為,直線AF的方程為,由,可得,∵PA⊥l,A為垂足,∴P點縱坐標為,代入拋物線方程,得P點坐標為,∴.故選:D.6、C【解析】根據(jù)題意得,進而根據(jù)投影向量的概念求解即可.【詳解】解:因為,,所以,所以,所以在上的投影向量為故選:C7、C【解析】按照程序框圖的流程進行計算.【詳解】,故輸出S的值為.故選:C8、A【解析】根據(jù)等差數(shù)列的性質(zhì)化簡已知條件可得的值,再由等差數(shù)列前項和及等差數(shù)列的性質(zhì)即可求解.【詳解】由等差數(shù)列的性質(zhì)可得:,,所以由可得:,解得:,所以數(shù)列的前13項之和為,故選:A9、A【解析】設(shè)等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進而可求得所求代數(shù)式的值.【詳解】設(shè)等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.10、D【解析】有兩個零點等價于與的圖象有兩個交點,利用導數(shù)分析函數(shù)的單調(diào)性與最值,畫出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時,,有兩個零點等價于與的圖象有兩個交點,畫出的圖象,如下圖所示,由圖可得,時,與的圖象有兩個交點,此時,函數(shù)有兩個零點,實數(shù)m的取值范圍是,故選:D.【點睛】方法點睛:本題主要考查分段函數(shù)的性質(zhì)、利用導數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點,以及數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學問題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來,圖象的應(yīng)用常見的命題探究角度有:1、確定方程根的個數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)11、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A12、B【解析】根據(jù)邏輯聯(lián)結(jié)詞“且”,一假則假,對四個選項一一判斷直接即可判斷.【詳解】邏輯聯(lián)結(jié)詞“且”,一假則假.因為命題p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯誤;為真,故B正確;為假,故C錯誤;為假,故D錯誤.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先根據(jù)求出圓的方程,再由的面積的最大值結(jié)合離心率求出和的值,進而求出面積的最小值.【詳解】解:由題意,設(shè),,因為即兩邊平方整理得:所以圓心為,半徑因為的面積的最大值為3所以,解得:因為橢圓離心率即,所以由得:所以面積的最小值為:故答案為:.【點睛】思路點睛:本題先根據(jù)已知的比例關(guān)系求出阿波羅尼斯圓的方程,再利用已知面積和離心率求出橢圓的方程,進而求得面積的最值.14、992【解析】列舉數(shù)列的前幾項,觀察特征,可得出.詳解】由題意得觀察規(guī)律可得中,以為被減數(shù)的項共有個,因為,所以是中的第5項,所以.故答案為:992.15、【解析】根據(jù)向量坐標意義及投影的定義得解.【詳解】因為向量,所以在軸上的投影向量為.故答案為:16、【解析】先計算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標為,代入橢圓C:求出.【詳解】橢圓C:,所以.因為M在橢圓上,.因為M在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標為.因為M為橢圓C:上一點且在第一象限,所以,解得:所以M的坐標為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點O,則平面ABC,可得,由條件可得,以O(shè)坐標原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點,所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O(shè)為坐標原點,分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標系,可得:,,,,,所以,,,設(shè)平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為18、(1)(2)證明見解析.【解析】(1)利用導數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數(shù)a的取值范圍;(2)記函數(shù),把證明,轉(zhuǎn)化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實數(shù)a的取值范圍為.【小問2詳解】記函數(shù).則函數(shù)有兩個不等實根.因為,,兩式相減得,,兩式相加得,.因為,所以要證,只需證明,只需證明,只需證明,.證.設(shè),只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點睛】導數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,對導數(shù)的應(yīng)用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù);(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題;(4)利用導數(shù)證明不等式19、(1)證明見解析;(2)證明見解析.【解析】(1)連接,分別證明出平面,平面,利用面面平行的判定定理可證得結(jié)論成立;(2)證明出平面,利用線面垂直的性質(zhì)可證得結(jié)論成立.【小問1詳解】證明:連接,在正方體中,,,所以,四邊形為平行四邊形,所以,在中,、分別為、的中點,所以,,所以,,因為平面,平面,所以,平面因為且,、分別為、的中點,則且,所以,四邊形為平行四邊形,則,,平面,平面,平面又,所以,平面平面【小問2詳解】證明:在正方體中,平面,平面,,因為四邊形為正方形,則,因為,則平面由知(1)平面平面,所以,平面,平面,因此,20、(1)證明見解析;(2)證明見解析.【解析】(1)由直棱柱的性質(zhì)可得,由勾股定理可得,由線面垂直判定定理即可得結(jié)果;(2)取的中點,連結(jié)和,通過線線平行得到面面,進而得結(jié)果.【詳解】(1)∵直三棱柱,∴面,∴,又∵,,,∴,∴,∵,∴面,∴(2)取的中點,連結(jié)和,∵,且,∴四邊形為平行四邊形,∴,面,∴面,∵,且,∴四邊形平行四邊形,∴,面,∴面,∵,∴面面,∴平面.【點睛】方法點睛:線面平行常見的證明方法:(1)通過構(gòu)造相似三角形(三角形中位線),得到線線平行;(2)通過構(gòu)造平行四邊形得到線線平行;(3)通過線面平行得到面面平行,再得線面平行.21、(1)(2)【解析】根據(jù),,成等比數(shù)列,橢圓上的點到焦點的距離的最大值為.列出關(guān)于、、的方程組,求出、的值,即可得出橢圓的方程;對直線和分兩種情況討論:一種是兩條直線與坐標軸垂直,可求出兩條弦長度之和;二是當兩條直線斜率都存在時,設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立,列出韋達定理,利用弦長公式可計算出的長度的表達式,然后利用相應(yīng)的代換可求出的長度表達式,將兩線段長度表達
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度安置住房產(chǎn)權(quán)分割買賣合同3篇
- 2025年度智能電網(wǎng)建設(shè)與運營承包合同含新能源并網(wǎng)與電力調(diào)度4篇
- 2025年度特種貨車承包運營合同4篇
- 2025年度?;奋囕v物流運輸合同4篇
- 2025年度幼兒園教室窗簾安全性與環(huán)保性檢測合同4篇
- 2025年度智能化城市景觀承包設(shè)計工程合同4篇
- 2024試讀生權(quán)益保障合同:學生試用條款明細版B版
- 2025年度智能充電樁設(shè)備集成采購合同4篇
- 2025年度二零二五年度竹林資源承包與生態(tài)旅游開發(fā)合同3篇
- 2025年度儲藏室租賃與貨物出入庫管理服務(wù)協(xié)議3篇
- 2019級水電站動力設(shè)備專業(yè)三年制人才培養(yǎng)方案
- 室內(nèi)裝飾裝修施工組織設(shè)計方案
- 洗浴中心活動方案
- 送電線路工程施工流程及組織措施
- 肝素誘導的血小板減少癥培訓課件
- 韓國文化特征課件
- 抖音認證承諾函
- 清潔劑知識培訓課件
- 新技術(shù)知識及軍事應(yīng)用教案
- 高等數(shù)學(第二版)
- 肺炎喘嗽的中醫(yī)護理常規(guī)
評論
0/150
提交評論