版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆湖北省武漢市華中師大一附中高二數(shù)學第一學期期末統(tǒng)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某軟件研發(fā)公司對某軟件進行升級,主要是對軟件程序中的某序列重新編輯,編輯新序列為,它的第項為,若序列的所有項都是1,且,.記數(shù)列的前項和、前項積分別為,,若,則的最小值為()A.2 B.3C.4 D.52.某種產(chǎn)品的廣告費支出與銷售額(單位:萬元)之間的關(guān)系如下表:245683040605070若已知與的線性回歸方程為,那么當廣告費支出為5萬元時,隨機誤差的效應(殘差)為萬元(殘差=真實值-預測值)A.40 B.30C.20 D.103.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.24.若函數(shù)在定義域上單調(diào)遞增,則實數(shù)的取值范圍為()A. B.C. D.5.已知圓:,是直線的一點,過點作圓的切線,切點為,,則的最小值為()A. B.C. D.6.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件7.某次生物實驗6個小組的耗材質(zhì)量(單位:千克)分別為1.71,1.58,1.63,1.43,1.85,1.67,則這組數(shù)據(jù)的中位數(shù)是()A.1.63 B.1.67C.1.64 D.1.658.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.9.某班對期中成績進行分析,利用隨機數(shù)表法抽取樣本時,先將60個同學的成績按01,02,03,……,60進行編號,然后從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,則選出的第6個個體是()(注:如下為隨機數(shù)表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.5210.焦點為的拋物線標準方程是()A. B.C. D.11.在矩形中,,在該矩形內(nèi)任取一點M,則事件“”發(fā)生的概率為()A. B.C. D.12.拋物線的焦點坐標是()A.(0,-1) B.(-1,0)C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知空間向量,則使成立的x的值為___________14.已知橢圓和雙曲線有相同的焦點和,設橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標原點).若,則的取值范圍是______15.在等比數(shù)列中,,,則公比________.16.曲線在處的切線方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前項和滿足,.(1)求的通項公式;(2)設,求數(shù)列的前n項和.18.(12分)在數(shù)列中,,,(1)設,證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項和.19.(12分)已知橢圓過點,且離心率為.(1)求橢圓的方程;(2)過作斜率分別為的兩條直線,分別交橢圓于點,且,證明:直線過定點.20.(12分)設函數(shù)過點(1)求函數(shù)的單調(diào)區(qū)間和極值(要列表);(2)求函數(shù)在上的最大值和最小值.21.(12分)設關(guān)于x的不等式的解集為A,關(guān)于x的不等式的解集為B(1)求集合A,B;(2)若是的必要不充分條件,求實數(shù)m的取值范圍22.(10分)已知圓的圓心在直線上,且過點(1)求圓的方程;(2)已知直線經(jīng)過原點,并且被圓截得的弦長為2,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先利用序列的所有項都是1,得到,整理后得到是等比數(shù)列,進而求出公比和首項,從而求出和,利用,列出不等式,求出,從而得到的最小值【詳解】因為,,所以,又序列的所有項都是1,所以它的第項,所以,所以數(shù)列是等比數(shù)列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值為4.故選:C.2、D【解析】分析:把所給的廣告費支出5萬元時,代入線性回歸方程,做出相應的銷售額,這是一個預測值,再求出與真實值之間有一個誤差即得.詳解:與的線性回歸方程為,當時,50,當廣告費支出5萬元時,由表格得:,故隨機誤差的效應(殘差)為萬元.故選D.點睛:本題考查回歸分析的初步應用,考查求線性回歸方程,考查預測y的值,是一個綜合題3、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.4、D【解析】函數(shù)在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數(shù)的定義域為,,在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【點睛】方法點睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.5、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長定理,將問題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設四邊形的面積為,由題設及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A6、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當時,利用正弦函數(shù)的單調(diào)性知;當時,或.綜上可知“”是“”的充分不必要條件.故選:A【點睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎題型.7、D【解析】將已有數(shù)據(jù)從小到大排序,根據(jù)中位數(shù)的定義確定該組數(shù)據(jù)的中位數(shù).【詳解】由題設,將數(shù)據(jù)從小到大排序可得:,∴中位數(shù)為.故選:D.8、A【解析】由焦距為可得,又,進而可得,最后根據(jù)焦點在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因為雙曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.9、D【解析】從指定位置起依次讀兩位數(shù)碼,超出編號的數(shù)刪除.【詳解】根據(jù)題意,從隨機數(shù)表第9行第5列的數(shù)1開始向右讀,依次選出的號碼數(shù)是:12,34,29,56,07,52;所以第6個個體是52.故選:D.10、D【解析】設拋物線的方程為,根據(jù)題意,得到,即可求解.【詳解】由題意,設拋物線的方程為,因為拋物線的焦點為,可得,解得,所以拋物線的方程為.故選:D.11、D【解析】利用幾何概型的概率公式,轉(zhuǎn)化為面積比直接求解.【詳解】以AB為直徑作圓,當點M在圓外時,.所以事件“”發(fā)生的概率為.故選:D12、C【解析】根據(jù)拋物線標準方程,可得p的值,進而求出焦點坐標.【詳解】由拋物線可知其開口向下,,所以焦點坐標為,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用空間向量垂直的坐標表示列方程求參數(shù)x的值.【詳解】由題設,,可得.故答案為:.14、【解析】設出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答,【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.15、【解析】根據(jù)等比數(shù)列的性質(zhì)求解即可.【詳解】因為等比數(shù)列中,故,又,故,故.故答案為:【點睛】本題主要考查了等比數(shù)列的性質(zhì)運用,需要注意分析項與公比的正負,屬于基礎題.16、【解析】求得的導數(shù),可得切線的斜率和切點,由斜截式方程可得切線方程【詳解】解:的導數(shù)為,可得曲線在處的切線斜率為,切點為,即有切線方程為故答案為【點睛】本題考查導數(shù)的運用:求切線方程,考查導數(shù)的幾何意義,直線方程的運用,考查方程思想,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)已知求出首項和公差即可求出;(2)利用裂項相消法求解即可.【小問1詳解】設等差數(shù)列的公差為,因為,所以,化簡得,解得,所以【小問2詳解】由(1)可知,所以,所以.18、(1)略(2)【解析】(1)題中條件,而要證明的是數(shù)列是等差數(shù)列,因此需將條件中所給的的遞推公式轉(zhuǎn)化為的遞推公式:,從而,,進而得證;(2)由(1)可得,,因此數(shù)列的通項公式可以看成一個等差數(shù)列與等比數(shù)列的乘積,故可考慮采用錯位相減法求其前項和,即有:①,①得:②,②-①得.試題解析:(1)∵,,又∵,∴,,∴則是為首項為公差的等差數(shù)列;由(1)得,∴,∴①,①得:②,②-①得.考點:1.數(shù)列的通項公式;2.錯位相減法求數(shù)列的和.19、(1);(2)證明見解析.【解析】(1)由離心率、過點和橢圓關(guān)系可構(gòu)造方程求得,由此可得橢圓方程;(2)當直線斜率不存在時,表示出兩點坐標,由兩點連線斜率公式表示出,整理可得直線為;當直線斜率存在時,設,與橢圓方程聯(lián)立可得韋達定理的形式,代入中整理可得,由此可得直線所過定點;綜合兩種情況可得直線過定點.【詳解】(1)橢圓過點,即,;,又,,橢圓的方程為:.(2)當直線斜率不存在時,設直線方程為,則,則,,解得:,直線方程為;當直線斜率存在時,設直線方程為,聯(lián)立方程組得:,設,則,(*),則,將*式代入化簡可得:,即,整理得:,代入直線方程得:,即,聯(lián)立方程組,解得:,,直線恒過定點;綜上所述:直線恒過定點.【點睛】思路點睛:本題考查直線與橢圓綜合應用中的直線過定點問題的求解,求解此類問題的基本思路如下:①假設直線方程,與橢圓方程聯(lián)立,整理為關(guān)于或的一元二次方程的形式;②利用求得變量的取值范圍,得到韋達定理的形式;③利用韋達定理表示出已知中的等量關(guān)系,代入韋達定理可整理得到變量間的關(guān)系,從而化簡直線方程;④根據(jù)直線過定點的求解方法可求得結(jié)果.20、(1)增區(qū)間,,減區(qū)間,極大值,極小值(2)最大值,最小值【解析】(1)將點代入函數(shù)解析式即可求得a,對函數(shù)求導,分析導函數(shù)的正負,確定單調(diào)區(qū)間及極值;(2)分析函數(shù)在此區(qū)間上的單調(diào)性,由極值、端點值確定最值.【小問1詳解】∵點在函數(shù)的圖象上,∴,解得,∴,∴,當或時,,單調(diào)遞增;當時,,單調(diào)遞減;當變化時,的變化情況如下表:00極大值極小值∴當時,有極大值,且極大值為,當時,有極小值,且極小值為,所以的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,極大值為,極小值為;【小問2詳解】由(1)可得:函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.∴,又,,∴21、(1),(2)【解析】(1)直接解不等式即可,(2)由題意可得,從而可得解不等式組可求得答案【小問1詳解】由,得,故由,得,故【小問2詳解】依題意得:,∴解得∴m的取值范圍為22、(1);(2)或.【解析】(1)根據(jù)題意設圓心坐標為,進而得,解得,故圓的方程為(2)分直線的斜率存在和不存在兩種情況討論求解即可.【詳解】(1)圓的圓心在直線上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度網(wǎng)絡安全防護系統(tǒng)建設公司正規(guī)合同3篇
- 二零二五年度公司對公司展覽展示空間租賃合同3篇
- 2025年度生物科技企業(yè)職工招聘與生物多樣性保護合同3篇
- 二零二五年度礦產(chǎn)資源開發(fā)承包合同3篇
- 養(yǎng)老院院民2025年度社區(qū)活動出行安全協(xié)議3篇
- 2025年度建筑材料供貨與建筑節(jié)能改造合同3篇
- 二零二五年度全屋衣柜定制及安裝一體化合同3篇
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)合伙合同協(xié)議3篇
- 2025年度企業(yè)合規(guī)管理委托代理合同3篇
- 2025年度全新出售房屋買賣智能家居集成協(xié)議3篇
- DB42-T 2219-2024 建筑施工企業(yè)從業(yè)人員安全培訓標準
- 福建省龍巖市2023-2024學年高一1月期末生物試題
- 養(yǎng)老集市活動方案
- GB/T 18336.5-2024網(wǎng)絡安全技術(shù)信息技術(shù)安全評估準則第5部分:預定義的安全要求包
- 足療技師規(guī)章制度
- 指導農(nóng)戶科學種植工作總結(jié)報告
- 2024年江蘇省南京市公共工程建設中心招聘高層次專業(yè)技術(shù)人才1人歷年高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 2020年10月自考00094外貿(mào)函電試題及答案含解析
- 中等職業(yè)學校教研教改工作總結(jié)
- 甲狀腺細針穿刺細胞學檢查課件
- 醫(yī)療廢物管理人員及相關(guān)工作人員培訓制度(15篇范文)
評論
0/150
提交評論