湖北省鄂州市2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
湖北省鄂州市2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
湖北省鄂州市2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
湖北省鄂州市2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
湖北省鄂州市2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省鄂州市2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知的展開(kāi)式中,各項(xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為,則()A.4 B.5C.6 D.72.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,而是逐項(xiàng)差數(shù)之差或者高次差相等.對(duì)這類(lèi)高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個(gè)高階等差數(shù)列,其前7項(xiàng)分別為1,5,11,21,37,61,95,則該數(shù)列的第8項(xiàng)為()A.99 B.131C.139 D.1413.已知函數(shù),則()A.1 B.2C.3 D.54.在等差數(shù)列中,,,則的值是()A.130 B.260C.156 D.1685.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米6.若直線被圓截得的弦長(zhǎng)為,則的最小值為()A. B.C. D.7.已知橢圓+=1(a>b>0)的右焦點(diǎn)為F(3,0),過(guò)點(diǎn)F的直線交橢圓于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為A.+=1 B.+=1C.+=1 D.+=18.已知實(shí)數(shù)滿足,則的取值范圍()A.-1m B.-1m<0或0<mC.m或m-1 D.m1或m-19.已知定義在區(qū)間上的函數(shù),,若以上兩函數(shù)的圖像有公共點(diǎn),且在公共點(diǎn)處切線相同,則m的值為()A.2 B.5C.1 D.010.在圓上任取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線段PD,D為垂足,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡記為C,則曲線C的離心率為()A. B.C. D.11.已知橢圓的左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若,則的面積為()A. B.C. D.12.復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.某班有位同學(xué),將他們從至編號(hào),現(xiàn)用系統(tǒng)抽樣的方法從中選取人參加文藝演出,抽出的編號(hào)從小到大依次排列,若排在第一位的編號(hào)是,那么第四位的編號(hào)是______14.在中,,,,則__________.15.已知B(,0)是圓A:內(nèi)一點(diǎn),點(diǎn)C是圓A上任意一點(diǎn),線段BC的垂直平分線與AC相交于點(diǎn)D.則動(dòng)點(diǎn)D的軌跡方程為_(kāi)________________.16.已知數(shù)列滿足0,,則數(shù)列的通項(xiàng)公式為_(kāi)___,則數(shù)列的前項(xiàng)和______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線與雙曲線相交于、兩點(diǎn).(1)當(dāng)時(shí),求;(2)是否存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,說(shuō)明理由.18.(12分)在直三棱柱中,,,,,分別是,上的點(diǎn),且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值19.(12分)如圖,水平桌面上放置一個(gè)棱長(zhǎng)為4的正方體的水槽,水面高度恰為正方體棱長(zhǎng)的一半,在該正方體側(cè)面有一個(gè)小孔(小孔的大小忽略不計(jì))E,E點(diǎn)到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當(dāng)水恰好流出時(shí),側(cè)面與桌面所成的角的大小.20.(12分)在等差數(shù)列中,,(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和21.(12分)已知是拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.(1)求的方程;(2)過(guò)上一動(dòng)點(diǎn)作的切線交軸于點(diǎn).判斷線段的中垂線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.22.(10分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線相切.(1)求圓O的方程;(2)設(shè)圓O交x軸于A,B兩點(diǎn),點(diǎn)P在圓O內(nèi),且是、的等比中項(xiàng),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用賦值法確定展開(kāi)式中各項(xiàng)系數(shù)的和以及二項(xiàng)式系數(shù)的和,利用比值為,列出關(guān)于的方程,解方程.【詳解】二項(xiàng)式的各項(xiàng)系數(shù)的和為,二項(xiàng)式的各項(xiàng)二項(xiàng)式系數(shù)的和為,因?yàn)楦黜?xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為,所以,.故選:C.2、D【解析】根據(jù)題中所給高階等差數(shù)列定義,找出其一般規(guī)律即可求解.【詳解】設(shè)該高階等差數(shù)列的第8項(xiàng)為,根據(jù)所給定義,用數(shù)列的后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,得到的數(shù)列也用后一項(xiàng)減去前一項(xiàng)得到一個(gè)數(shù)列,即得到了一個(gè)等差數(shù)列,如圖:由圖可得,則.故選:D3、C【解析】利用導(dǎo)數(shù)的定義,以及運(yùn)算法則,即可求解.【詳解】,,所以,所以故選:C4、A【解析】由等差數(shù)列的性質(zhì)計(jì)算得到,進(jìn)而利用求和公式,變形求出答案.【詳解】由題意得:,故故選:A5、B【解析】以雙曲線的對(duì)稱中心為原點(diǎn),焦點(diǎn)所在對(duì)稱軸為y軸建立直角坐標(biāo)系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對(duì)稱中心為原點(diǎn),焦點(diǎn)所在對(duì)稱軸為y軸建立直角坐標(biāo)系,設(shè)雙曲線標(biāo)準(zhǔn)方程為:(a>0),則頂點(diǎn),,將A點(diǎn)代入雙曲線方程得,,當(dāng)水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.6、D【解析】先根據(jù)已知條件得出,再利用基本不等式求的最小值即可.【詳解】圓的標(biāo)準(zhǔn)方程為,圓心為,半徑為,若直線被截得弦長(zhǎng)為,說(shuō)明圓心在直線:上,即,即,∴,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立故選:D.【點(diǎn)睛】本題主要考查利用基本不等式求最值,本題關(guān)鍵是求出,屬常規(guī)考題.7、D【解析】設(shè)、,所以,運(yùn)用點(diǎn)差法,所以直線的斜率為,設(shè)直線方程為,聯(lián)立直線與橢圓的方程,所以;又因?yàn)?,解?【考點(diǎn)定位】本題考查直線與圓錐曲線的關(guān)系,考查學(xué)生的化歸與轉(zhuǎn)化能力.8、C【解析】把看成動(dòng)點(diǎn)與所確定的直線的斜率,動(dòng)點(diǎn)在所給曲線上.【詳解】就是點(diǎn),所確定的直線的斜率,而在上,因?yàn)椋?故選:C9、C【解析】設(shè)兩曲線與公共點(diǎn)為,分別求得函數(shù)的導(dǎo)數(shù),根據(jù)兩函數(shù)的圖像有公共點(diǎn),且在公共點(diǎn)處切線相同,列出等式,求得公共點(diǎn)的坐標(biāo),代入函數(shù),即可求解.【詳解】根據(jù)題意,設(shè)兩曲線與公共點(diǎn)為,其中,由,可得,則切線的斜率為,由,可得,則切線斜率為,因?yàn)閮珊瘮?shù)的圖像有公共點(diǎn),且在公共點(diǎn)處切線相同,所以,解得或(舍去),又由,即公共點(diǎn)的坐標(biāo)為,將點(diǎn)代入,可得.故選:C.10、B【解析】設(shè),,則由題意可得,代入圓方程中化簡(jiǎn)可得曲線C的方程,從而可求出離心率【詳解】設(shè),,則,得,所以,因?yàn)辄c(diǎn)在圓上,所以,即,所以點(diǎn)的軌跡方程為,所以,則所以離心率為,故選:B11、B【解析】求出,可知為等腰三角形,取的中點(diǎn),可得出,利用勾股定理求得,利用三角形的面積公式可求得結(jié)果.【詳解】在橢圓中,,,則,所以,,由橢圓的定義可得,取的中點(diǎn),因?yàn)?,則,由勾股定理可得,所以,.故選:B.12、C【解析】化簡(jiǎn)復(fù)數(shù),根據(jù)復(fù)數(shù)的幾何意義,即可求解.【詳解】由題意,復(fù)數(shù),所以復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為位于第三象限.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、29【解析】根據(jù)給定信息利用系統(tǒng)抽樣的特征直接計(jì)算作答.【詳解】因系統(tǒng)抽樣是等距離抽樣,依題意,相鄰兩個(gè)編號(hào)相距,所以第四位的編號(hào)是.故答案為:2914、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因?yàn)樵谥?,,,,所以由余弦定理可得,所以,即,則故答案為:15、【解析】利用橢圓的定義可得軌跡方程.【詳解】連接,由題意,,則,由橢圓的定義可得動(dòng)點(diǎn)D的軌跡為橢圓,其焦點(diǎn)坐標(biāo)為,長(zhǎng)半軸長(zhǎng)為2,故短半軸長(zhǎng)為1,故軌跡方程為:.故答案為:.16、①.②.【解析】第一空:先構(gòu)造等比數(shù)列求出,即可求出的通項(xiàng)公式;第二空:先求出,令,通過(guò)錯(cuò)位相減求出的前項(xiàng)和為,再結(jié)合等差數(shù)列的求和公式及分組求和即可求解.【詳解】第一空:由可得,又,則是以1為首項(xiàng),2為公比的等比數(shù)列,則,則;第二空:,設(shè),前項(xiàng)和為,則,,兩式相減得,則,又,則.故答案為:;.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)不存在,理由見(jiàn)解析.【解析】(1)當(dāng)時(shí),將直線的方程與雙曲線的方程聯(lián)立,列出韋達(dá)定理,利用弦長(zhǎng)公式可求得;(2)假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)、,將直線與雙曲線的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出,即可得出結(jié)論.【小問(wèn)1詳解】解:設(shè)點(diǎn)、,當(dāng)時(shí),聯(lián)立,可得,,由韋達(dá)定理可得,,所以,.【小問(wèn)2詳解】解:假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)、,聯(lián)立得,由題意可得,解得且,由韋達(dá)定理可知,因?yàn)橐詾橹睆降膱A經(jīng)過(guò)坐標(biāo)原點(diǎn),則,所以,,整理可得,該方程無(wú)實(shí)解,故不存在.18、(1)證明見(jiàn)解析(2)【解析】(1)建立空間直角坐標(biāo)系,由空間向量證明與平面的法向量垂直(2)由空間向量求解【小問(wèn)1詳解】以C為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,如圖,則,,,,,,設(shè),因?yàn)?,所以,故,得,同理求得,所以,因?yàn)槭瞧矫娴囊粋€(gè)法向量,且,所以,又平面,所以平面;【小問(wèn)2詳解】由(1)可得:,,設(shè)平面的一個(gè)法向量為,則,即令,則,所以,又平面的一個(gè)法向量為,設(shè)表示平面與平面所成銳二面角,則19、(1)證明見(jiàn)解析(2)【解析】(1)由水的體積得出,進(jìn)而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內(nèi),過(guò)點(diǎn)作,交于,由四邊形是平行四邊形,得出側(cè)面與桌面所成的角即側(cè)面與水面所成的角,再由直角三角形的邊角關(guān)系得出其夾角.【小問(wèn)1詳解】由題意知,水的體積為,如圖所示,設(shè)正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;【小問(wèn)2詳解】在平面內(nèi),過(guò)點(diǎn)作,交于,則四邊形是平行四邊形,,,側(cè)面與桌面所成的角即側(cè)面與水面所成的角,即側(cè)面與平面所成的角,即為所求,而,在中,,側(cè)面與桌面所成角的為20、(1);(2).【解析】(1)根據(jù)等差數(shù)列的通項(xiàng)公式求解;(2)運(yùn)用裂項(xiàng)相消法求數(shù)列的和.詳解】(1)∵,∴,即∴(2)由(1)可得,即.利用累加法得【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和裂項(xiàng)相消法求數(shù)列的和.21、(1)(2)過(guò)定點(diǎn),定點(diǎn)為【解析】(1)利用拋物線的定義求解;(2)設(shè)直線的方程為,,與拋物線方程聯(lián)立,根據(jù)直線與拋物線C相切,由求得,再得到,寫(xiě)出線段的中垂線方程求解.【小問(wèn)1詳解】解:由題意得,,解得=2p,因?yàn)辄c(diǎn)M(,4)在拋物線C上,所以42=2p=4p2,解得p=2,所以拋物線C的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】由已知得,直線的斜率存在且不為0,所以設(shè)直線的方程為,與拋物線方程聯(lián)立并消去得:,因?yàn)橹本€與拋物線C相切,所以,得,,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論