黑龍江哈爾濱市省實驗中學2025屆數(shù)學高一上期末監(jiān)測試題含解析_第1頁
黑龍江哈爾濱市省實驗中學2025屆數(shù)學高一上期末監(jiān)測試題含解析_第2頁
黑龍江哈爾濱市省實驗中學2025屆數(shù)學高一上期末監(jiān)測試題含解析_第3頁
黑龍江哈爾濱市省實驗中學2025屆數(shù)學高一上期末監(jiān)測試題含解析_第4頁
黑龍江哈爾濱市省實驗中學2025屆數(shù)學高一上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

黑龍江哈爾濱市省實驗中學2025屆數(shù)學高一上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對于函數(shù),,“”是“的圖象既關于原點對稱又關于軸對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.下列選項中,與的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.3.已知函數(shù)則()A.- B.2C.4 D.114.已知指數(shù)函數(shù)在上單調遞增,則的值為()A.3 B.2C. D.5.設全集,集合,則等于A. B.C. D.6.為了給地球減負,提高資源利用率,2020年全國掀起了垃圾分類的熱潮,垃圾分類已經(jīng)成為新時尚.假設某市2020年全年用于垃圾分類的資金為3000萬元,在此基礎上,以后每年投入的資金比上一年增長20%,則該市全年用于垃圾分類的資金開始超過1億元的年份是(參考數(shù)據(jù):,,)()A2026年 B.2027年C.2028年 D.2029年7.已知角為第四象限角,則點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知函數(shù),則是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)9.已知在海中一孤島的周圍有兩個觀察站,且觀察站在島的正北5海里處,觀察站在島的正西方.現(xiàn)在海面上有一船,在點測得其在南偏西60°方向相距4海里處,在點測得其在北偏西30°方向,則兩個觀察站與的距離為A. B.C. D.10.若,,則的值為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域為__________________.12.計算:=___________13.函數(shù)的值域是____.14.函數(shù)的定義域為________15.已知,,且,則的最小值為______16.的值為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.設為實數(shù),函數(shù).(1)若,求的取值范圍;(2)討論的單調性;(3)是否存在滿足:在上值域為.若存在,求的取值范圍.18.2020年初至今,新冠肺炎疫情襲擊全球,對人民生命安全和生產(chǎn)生活造成嚴重影響.在黨和政府強有力抗疫領導下,我國控制住疫情后,一方面防止境外疫情輸入,另一方面逐步復工復產(chǎn),減輕經(jīng)濟下降對企業(yè)和民眾帶來的損失.為降低疫情影響,某廠家擬在2022年舉行某產(chǎn)品的促銷活動,經(jīng)調查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x萬件與年促銷費用m萬元(m≥0)滿足x=4?.已知生產(chǎn)該產(chǎn)品的固定成本為8萬元,生產(chǎn)成本為16萬元/萬件,廠家將產(chǎn)品的銷售價格定為萬元/萬件(產(chǎn)品年平均成本)的1.5倍.(1)將2022年該產(chǎn)品的利潤y萬元表示為年促銷費用m萬元的函數(shù);(2)該廠家2022年的促銷費用投入多少萬元時,廠家的利潤最大?19.(1)已知,,,求的最小值;(2)把角化成的形式.20.已知函數(shù)f(x)=lg(3+x)+lg(3-x)(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由21.如圖,某市準備在道路的一側修建一條運動比賽道,賽道的前一部分為曲線段,該曲線段是函數(shù),時的圖象,且圖象的最高點為,賽道的中部分為長千米的直線跑道,且,賽道的后一部分是以為圓心的一段圓?。?)求的值和的大小;(2)若要在圓弧賽道所對應的扇形區(qū)域內(nèi)建一個“矩形草坪”,矩形的一邊在道路上,一個頂點在半徑上,另外一個頂點在圓弧上,且,求當“矩形草坪”的面積取最大值時的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由函數(shù)奇偶性的定義求出的解析式,可得出結論.【詳解】若函數(shù)的定義域為,的圖象既關于原點對稱又關于軸對稱,則,可得,因此,“”是“的圖象既關于原點對稱又關于軸對稱”的充要條件故選:C.2、C【解析】先計算的值,再逐項計算各項的值,從而可得正確的選項.【詳解】.對于A,因為,故A正確.對于B,,故B正確.對于C,,故C錯誤.對于D,,故D正確.故選:C.3、C【解析】根據(jù)分段函數(shù)的分段條件,先求得,進而求得的值,得到答案.【詳解】由題意,函數(shù),可得,所以.故選:C.【點睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的分段條件,代入準確運算是解答的關鍵,著重考查運算與求解能力.4、B【解析】令系數(shù)為,解出的值,又函數(shù)在上單調遞增,可得答案【詳解】解得,又函數(shù)在上單調遞增,則,故選:B5、A【解析】,=6、B【解析】設經(jīng)過年之后,投入資金為萬元,根據(jù)題意列出與的關系式;1億元轉化為萬元,令,結合參考數(shù)據(jù)即可求出的范圍,從而判斷出選項.【詳解】設經(jīng)過年之后,投入資金為萬元,則,由題意可得:,即,所以,即,又因為,所以,即從2027年開始該市全年用于垃圾分類的資金超過1億元.故選:B7、C【解析】根據(jù)三角函數(shù)的定義判斷、的符號,即可判斷.【詳解】因為是第四象限角,所以,,則點位于第三象限,故選:C8、B【解析】先求得,再根據(jù)余弦函數(shù)的周期性、奇偶性,判斷各個選項是否正確,從而得出結論【詳解】∵,∴=,∵,且T=,∴是最小正周期為偶函數(shù),故選B.【點睛】本題主要考查誘導公式,余弦函數(shù)的奇偶性、周期性,屬于基礎題9、D【解析】畫出如下示意圖由題意可得,,又,所以A,B,C,D四點共圓,且AC為直徑、在中,,由余弦定理得,∴∴(其中為圓的半徑).選D10、A【解析】由兩角差的正切公式展開計算可得【詳解】解:,,則,故選A【點睛】本題考查兩角差的正切公式:,對應還應該掌握兩角和的正切公式,及正弦余弦公式.本題是基礎二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由,解得,所以定義域為考點:本題考查定義域點評:解決本題關鍵熟練掌握正切函數(shù)的定義域12、1【解析】.故答案為113、##【解析】由余弦函數(shù)的有界性求解即可【詳解】因為,所以,所以,故函數(shù)的值域為,故答案為:14、【解析】根據(jù)偶次方根被開方數(shù)為非負數(shù)、對數(shù)真數(shù)大于零列不等式組,解不等式組求得函數(shù)的定義域.【詳解】依題意,解得,故函數(shù)的定義域為.故答案為.【點睛】本小題主要考查具體函數(shù)定義域的求法,屬于基礎題.15、6【解析】由可知,要使取最小值,只需最小即可,故結合,求出的最小值即可求解.【詳解】由,,得(當且僅當時,等號成立),又因,得,即,由,,解得,即,故.因此當時,取最小值6.故答案為:6.16、11【解析】進行對數(shù)和分數(shù)指數(shù)冪的運算即可【詳解】原式故答案為:11三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)在上單調遞增,在上單調遞減;(3)不存在.【解析】(1)直接求出,從而通過解不等式可求得的取值范圍;(2)根據(jù)二次函數(shù)的單調性即可得出分段函數(shù)的單調性;(3)首先判斷出,從而得到,即在上單調遞增;然后把問題轉化為在上有兩個不等實數(shù)根的問題,從而判斷出不存在的值.【詳解】(1)∵,∴,即,所以,所以的取值范圍為.(2)易知,對于,其對稱軸為,開口向上,所以在上單調遞增;對于,其對稱軸為,開口向上,所以在上單調遞減,綜上知,在上單調遞增,在上單調遞減;(3)由(2)得,又在上的值域為,所以,又∵在上單調遞增,∴,即在上有兩個不等實數(shù)根,即在上有兩個不等實數(shù)根,即在上有兩個不等實數(shù)根,令,則其對稱軸為,所以在上不可能存在兩個不等的實根,∴不存在滿足在上的值域為.18、(1)(2)3萬元【解析】(1)依據(jù)題意列出該產(chǎn)品的利潤y萬元關于年促銷費用m萬元的解析式即可;(2)依據(jù)均值定理即可求得促銷費用投入3萬元時,廠家的利潤最大.【小問1詳解】由題意知,每萬件產(chǎn)品的銷售價格為(萬元),x=4?則2022年的利潤【小問2詳解】∵當時,,∴,(當且僅當時等號成立)∴,當且僅當萬元時,(萬元)故該廠家2022年的促銷費用投入3萬元時,廠家的利潤最大為29萬元19、(1);(2).【解析】(1)利用基本不等式可求得的最小值;(2)將角度化為弧度,再將弧度化為的形式即可.【詳解】解:(1)因為,,,,當且僅當時,等號成立,故的最小值為;(2),.20、(1);(2)偶函數(shù),理由詳見解析【解析】(1)求定義域,通常就是求使函數(shù)式有意義的自變量取值集合,所以只要滿足各項都有意義即可,對數(shù)型的函數(shù)求值域,關鍵求出真數(shù)部分的取值范圍就可以了;(2)判斷函數(shù)奇偶性,就是利用奇偶性定義判斷即可試題解析:(1)由函數(shù)式可得又所以值域為(2)由(1)可知定義域關于原點對稱所以原函數(shù)為偶函數(shù)考點:1.求復合函數(shù)的定義域、值域;2.用定義判斷函數(shù)奇偶性21、(1),;(2).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論