甘肅省天水市2025屆高二上數(shù)學期末綜合測試試題含解析_第1頁
甘肅省天水市2025屆高二上數(shù)學期末綜合測試試題含解析_第2頁
甘肅省天水市2025屆高二上數(shù)學期末綜合測試試題含解析_第3頁
甘肅省天水市2025屆高二上數(shù)學期末綜合測試試題含解析_第4頁
甘肅省天水市2025屆高二上數(shù)學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省天水市2025屆高二上數(shù)學期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使2.若不等式組表示的區(qū)域為,不等式表示的區(qū)域為,向區(qū)域均勻隨機撒顆芝麻,則落在區(qū)域中的芝麻數(shù)約為()A. B.C. D.3.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.4.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形個數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形,則的表達式為()A. B.C. D.5.已知直四棱柱的棱長均為,則直線與側(cè)面所成角的正切值為()A. B.C. D.6.已知等差數(shù)列中,、是的兩根,則()A B.C. D.7.已知橢圓的兩焦點分別為,,P為橢圓上一點,且,則的面積等于()A.6 B.C. D.8.在長方體,,則異面直線與所成角的余弦值是()A. B.C. D.9.已知函數(shù),則下列判斷正確的是()A.直線與曲線相切B.函數(shù)只有極大值,無極小值C.若與互為相反數(shù),則的極值與的極值互為相反數(shù)D.若與互為倒數(shù),則的極值與的極值互為倒數(shù)10.下列說法正確的是()A.空間中的任意三點可以確定一個平面B.四邊相等的四邊形一定是菱形C.兩條相交直線可以確定一個平面D.正四棱柱的側(cè)面都是正方形11.已知點是雙曲線的左焦點,定點,是雙曲線右支上動點,則的最小值為().A.7 B.8C.9 D.1012.已知P是直線上的動點,PA,PB是圓的切線,A,B為切點,C為圓心,那么四邊形PACB的面積的最小值是()A2 B.C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點F為,過點F的直線交該拋物線的準線于點A,與該拋物線的一個交點為B,且,則______14.在平面直角坐標系中,雙曲線左、右焦點分別為,,點M是雙曲線右支上一點,,則雙曲線的漸近線方程為___________.15.過拋物線的焦點且斜率為的直線交拋物線于A,兩點,,則的值為__________16.已知圓的方程為,點是直線上的一個動點,過點作圓的兩條切線為切點,則四邊形面積的最小值為__________;直線__________過定點.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某城市地鐵公司為鼓勵人們綠色出行,決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過12站的地鐵票價如下表:乘坐站數(shù)票價(元)246現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過12站,且他們各自在每個站下地鐵的可能性是相同的.(1)若甲、乙兩人共付費6元,則甲、乙下地鐵的方案共有多少種?(2)若甲、乙兩人共付費8元,則甲比乙先下地鐵的方案共有多少種?18.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點.(1)證明:直線面DEF;(2)求二面角的余弦值.19.(12分)已知函數(shù)(1)若在點處的切線與軸平行,求的值;(2)當時,求證:;(3)若函數(shù)有兩個零點,求的取值范圍20.(12分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:21.(12分)已知橢圓C對稱中心在原點,對稱軸為坐標軸,且,兩點(1)求橢圓C的方程;(2)設(shè)M、N分別為橢圓與x軸負半軸、y軸負半軸的交點,P為橢圓上在第一象限內(nèi)一點,直線PM與y軸交于點S,直線PN與x軸交于點T,求證:四邊形MSTN的面積為定值22.(10分)已知數(shù)列滿足,,數(shù)列前項和為.(1)求數(shù)列,的通項公式;(2)表示不超過的最大整數(shù),如,設(shè)的前項和為,令,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結(jié)論否定,所以“,使”的否定為“,有”,故選:B.2、A【解析】作出兩平面區(qū)域,計算兩區(qū)域的公共面積,利用幾何概型得出芝麻落在區(qū)域Γ內(nèi)的概率,進而可得答案.【詳解】作出不等式組所表示的平面區(qū)域如下圖中三角形ABC及其內(nèi)部,不等式表示的區(qū)域如下圖中的圓及其內(nèi)部:由圖可得,A點坐標為點坐標為坐標為點坐標為.區(qū)域即的面積為,區(qū)域的面積為圓的面積,即,其中區(qū)域和區(qū)域不相交的部分面積即空白面積,所以區(qū)域和區(qū)域相交的部分面積,所以落入?yún)^(qū)域的概率為.所以均勻隨機撒顆芝麻,則落在區(qū)域中芝麻數(shù)約為.故選:A.3、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C4、D【解析】先分別觀察給出正方體的個數(shù)為:1,,,,總結(jié)一般性的規(guī)律,將一般性的數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點睛】本題主要考查了歸納推理,屬于中檔題5、D【解析】根據(jù)題意把直線與側(cè)面所成角的正切值轉(zhuǎn)化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設(shè)為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側(cè)面所成角的正切值為.故選:D.6、B【解析】利用韋達定理結(jié)合等差中項的性質(zhì)可求得的值,再結(jié)合等差中項的性質(zhì)可求得結(jié)果.【詳解】對于方程,,由韋達定理可得,故,則,所以,.故選:B.7、B【解析】根據(jù)橢圓定義和余弦定理解得,結(jié)合三解形面積公式即可求解【詳解】由與是橢圓上一點,∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B8、A【解析】在長方體中建立空間直角坐標系,求出相關(guān)點的坐標,進而求得向量,的坐標,利用向量的夾角公式即可求得答案.詳解】如圖,由題意可知DA,DC,兩兩垂直,則以D為原點,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系.設(shè),則,,,,,,從而,故異面直線與所成角的余弦值是,故選:A.9、C【解析】求出函數(shù)的導函數(shù),通過在某點處的導數(shù)為該點處切線的斜率,求出切線方程,并且判斷出極值,通過結(jié)合與互為相反數(shù),若與互為倒數(shù),分別判斷的極值與的極值是否互為相反數(shù),以及是否互為倒數(shù).【詳解】,,令,得,所以,因為,,所以曲線在點處的切線方程為,故A錯;當時,存在使,且當時,;當時,,即有極小值,無極大值,故B錯誤;設(shè)為的極值點,則,且,所以,,當時,;當時,,故C正確,D錯誤.10、C【解析】根據(jù)立體幾何相關(guān)知識對各選項進行判斷即可.【詳解】對于A,根據(jù)公理2及推論可知,不共線的三點確定一個平面,故A錯誤;對于B,在一個平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯誤;對于C,根據(jù)公理2及推論可知,兩條相交直線可以確定一個平面,故C正確;對于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯誤.故選:C11、C【解析】設(shè)雙曲線的右焦點為M,作出圖形,根據(jù)雙曲線的定義可得,可得出,利用A、P、M三點共線時取得最小值即可得解.【詳解】∵是雙曲線的左焦點,∴,,,,設(shè)雙曲線的右焦點為M,則,由雙曲線的定義可得,則,所以,當且僅當A、P、M三點共線時,等號成立,因此,的最小值為9.故選:C.【點睛】關(guān)鍵點點睛:利用雙曲線的定義求解線段和的最小值,有如下方法:(1)求解橢圓、雙曲線有關(guān)的線段長度和、差的最值,都可以通過相應的圓錐曲線的定義分析問題;(2)圓外一點到圓上的點的距離的最值,可通過連接圓外的點與圓心來分析求解.12、D【解析】由圓C的標準方程可得圓心為(1,1),半徑為1,根據(jù)切線的性質(zhì)可得四邊形PACB面積等于,,故求解最小時即可確定四邊形PACB面積的最小值.【詳解】圓C:x2+y2-2x-2y+1=0即,表示以C(1,1)為圓心,以1為半徑的圓,由于四邊形PACB面積等于2×××=,而,故當最小時,四邊形PACB面積最小,又的最小值等于圓心C到直線l:的距離d,而,故四邊形PACB面積的最小值為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作垂直于準線,垂足為,準線與軸交于點,根據(jù)已知條件,利用幾何方法,結(jié)合拋物線的定義得到答案.【詳解】拋物線的焦點坐標,準線方程,作垂直于準線于,準線與軸交于點,則,∴.∵,∴,由拋物線的定義得,∴.故答案為:.14、【解析】首先根據(jù)已知條件得到,再結(jié)合雙曲線的幾何性質(zhì)求解即可.【詳解】如圖所示:,,所以,即.設(shè),則,.即,,,,所以,漸近線方程為.故答案為:15、2【解析】求出直線的方程,與拋物線的方程聯(lián)立,利用根與系數(shù)的關(guān)系可,,由拋物線的定義可知,,,即可得到【詳解】解:拋物線的焦點,,準線方程為,設(shè),,,,則直線的方程為,代入可得,,,由拋物線的定義可知,,,,解得故答案為:216、①.②.【解析】根據(jù)切線的相關(guān)性質(zhì)將四邊形面積化為,即求出最小值即可,即圓心到直線的距離;又可得四點在以為直徑的圓上,且是兩圓的公共弦,設(shè)出點坐標,求出圓的方程可得直線方程,即可得出定點.詳解】由圓得圓心,半徑,由題意可得,在中,,,可知當垂直直線時,,所以四邊形的面積的最小值為,可得四點在以為直徑的圓上,且是兩圓的公共弦,設(shè),則圓心為,半徑為,則該圓方程為,整理可得,聯(lián)立兩圓可得直線AB的方程為,即可得當時,,故直線過定點.故答案為:;.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)24(種)(2)21(種)【解析】(1)先根據(jù)共付費6元得一人付費2元一人付費4元,再確定人與乘坐站數(shù),即可得結(jié)果;(2)先根據(jù)共付費8元得一人付費2元一人付費6元或兩人都付費4元,再求甲比乙先下地鐵的方案數(shù).【小問1詳解】由已知可得:甲、乙兩人共付費6元,則甲、乙一人付費2元一人付費4元,又付費2元的乘坐站數(shù)有1,2,3三種選擇,付費4元的乘坐站數(shù)有4,5,6,7四種選,所以甲、乙下地鐵的方案共有(3×4)×2=24(種).【小問2詳解】甲、乙兩人共付費8元,則甲、乙一人付費2元一人付費6元或兩人都付費4元;當甲付費2元,乙付費6元時,甲乘坐站數(shù)有1,2,3三種選擇,乙乘坐站數(shù)有8,9,10,11,12五種選擇,此時,共有35=15(種)方案;當兩人都付費4元時,若甲在第4站下地鐵,則乙可在第5,6,7站下地鐵,有3種方案;若甲在第5站下地鐵,則乙可在第6,7站下地鐵,有2種方案;若甲在第6站下地鐵,則乙可在第7站下地鐵,有1種方案;綜上,甲比乙先下地鐵的方案共有(種).18、(1)證明見解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點,為軸,豎直向上為軸建立空間直角坐標系,利用向量法計算與平面的法向量的數(shù)量積為0即可得證;(2)分別計算出平面和平面的法向量,然后利用向量夾角公式即可求解.【小問1詳解】證明:因為平面平面ABCD,平面平面ABCD,且,所以平面ABCD,連接BD,則等邊三角形,所以,以為原點,為軸,豎直向上為軸建立如圖所示的空間直角坐標系,則,設(shè)為平面的法向量,因為,則有,取,又因為,所以,因為平面,所以平面;【小問2詳解】解:分別設(shè)為平面和平面的法向量,因為,則有,取,因,則有,取,所以,由圖可知二面角為銳二面角,所以二面角的余弦值為.19、(1);(2)證明見解析;(3).【解析】(1)由可求得實數(shù)的值;(2)利用導數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點,且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因為的定義域為,.由題意可得,解得.【小問2詳解】證明:當時,,該函數(shù)的定義域為,,令,其中,則,故函數(shù)在上遞減,因為,,所以,存在,使得,則,且,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,所以,,所以,當時,.【小問3詳解】解:函數(shù)的定義域為,.令,其中,則,所以,函數(shù)單調(diào)遞減,因為函數(shù)有兩個零點,等價于函數(shù)在上存在唯一的極值點,且為極大值點,且,即,所以,,令,其中,則,故函數(shù)在上單調(diào)遞增,又因為,由,可得,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,因此,實數(shù)的取值范圍是.【點睛】方法點睛:利用導數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進而構(gòu)造輔助函數(shù);(2)適當放縮構(gòu)造法:一是根據(jù)已知條件適當放縮;二是利用常見放縮

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論