版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
寧夏固原市涇源縣市級名校2023-2024學年畢業(yè)升學考試模擬卷數(shù)學卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一枚質(zhì)地均勻的骰子,骰子的六個面上分別刻有1到6的點數(shù),投擲這樣的骰子一次,向上一面點數(shù)是偶數(shù)的結(jié)果有()A.1種 B.2種 C.3種 D.6種2.已知關(guān)于x的方程x2﹣4x+c+1=0有兩個相等的實數(shù)根,則常數(shù)c的值為(
)A.﹣1 B.0 C.1 D.33.如圖,在△ABC中,AD是BC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點落在C′的位置,若BC=4,則BC′的長為()A.2 B.2 C.4 D.34.下列計算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=15.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則一次函數(shù)的圖象可能是:A. B. C. D.6.如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結(jié)論:①3a+b<0;②-1≤a≤-23;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2A.1個B.2個C.3個D.4個7.若關(guān)于x的一元二次方程x2-2x-k=0沒有實數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-18.某果園2011年水果產(chǎn)量為100噸,2013年水果產(chǎn)量為144噸,求該果園水果產(chǎn)量的年平均增長率.設(shè)該果園水果產(chǎn)量的年平均增長率為x,則根據(jù)題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1449.下列運算結(jié)果正確的是()A.a(chǎn)3+a4=a7 B.a(chǎn)4÷a3=a C.a(chǎn)3?a2=2a3 D.(a3)3=a610.將5570000用科學記數(shù)法表示正確的是()A.5.57×105B.5.57×106C.5.57×107D.5.57×10811.如圖,在等腰直角△ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.12.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,sin∠C,長度為2的線段ED在射線CF上滑動,點B在射線CA上,且BC=5,則△BDE周長的最小值為______.14.如圖,△ABC中,CD⊥AB于D,E是AC的中點.若AD=6,DE=5,則CD的長等于.15.函數(shù)中,自變量的取值范圍是______.16.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(1)AB的長等于____;(2)在△ABC的內(nèi)部有一點P,滿足S△PABS△PBCS△PCA=1:2:3,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_______17.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點都在y=的圖象上,則yl,y2,y3的大小關(guān)系是_____.(用“<”號填空)18.已知菱形的周長為10cm,一條對角線長為6cm,則這個菱形的面積是_____cm1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知平行四邊形ABCD,將這個四邊形折疊,使得點A和點C重合,請你用尺規(guī)做出折痕所在的直線。(保留作圖痕跡,不寫做法)20.(6分)許昌文峰塔又稱文明寺塔,為全國重點文物保護單位,某校初三數(shù)學興趣小組的同學想要利用學過的知識測量文峰塔的高度,他們找來了測角儀和卷尺,在點A處測得塔頂C的仰角為30°,向塔的方向移動60米后到達點B,再次測得塔頂C的仰角為60°,試通過計算求出文峰塔的高度CD.(結(jié)果保留兩位小數(shù))21.(6分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.22.(8分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大?。唬?)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大?。?3.(8分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.24.(10分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點D是點C關(guān)于拋物線對稱軸的對稱點,連接CD,過點D作DH⊥x軸于點H,過點A作AE⊥AC交DH的延長線于點E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點F,在線段DE上找一點P,且點M為直線PF上方拋物線上的一點,求當△CPF的周長最小時,△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點K,則是否存在這樣的點K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.25.(10分)當=,b=2時,求代數(shù)式的值.26.(12分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉(zhuǎn)α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉(zhuǎn)過程中,半圓弧與直線CD只有一個交點時,設(shè)此交點與點C的距離為d,直接寫出d的取值范圍.27.(12分)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】試題分析:一枚質(zhì)地均勻的正方體骰子的六個面上分別刻有1到6的點數(shù),擲一次這枚骰子,向上的一面的點數(shù)為偶數(shù)的有3種情況,故選C.考點:正方體相對兩個面上的文字.2、D【解析】分析:由于方程x2﹣4x+c+1=0有兩個相等的實數(shù)根,所以?=b2﹣4ac=0,可得關(guān)于c的一元一次方程,然后解方程求出c的值.詳解:由題意得,(-4)2-4(c+1)=0,c=3.故選D.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.3、A【解析】連接CC′,∵將△ADC沿AD折疊,使C點落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等邊三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC邊的中線,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC?cos∠DBC′=4×=2,故選A.【點睛】本題考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)以及三角函數(shù)等知識,準確添加輔助線,掌握折疊前后圖形的對應關(guān)系是解題的關(guān)鍵.4、D【解析】試題分析:x4x4=x8(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術(shù)平方根取正號);(a6)考點:1、冪的運算;2、完全平方公式;3、算術(shù)平方根.5、B【解析】
由方程有兩個不相等的實數(shù)根,可得,解得,即異號,當時,一次函數(shù)的圖象過一三四象限,當時,一次函數(shù)的圖象過一二四象限,故答案選B.6、D【解析】
利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進行判斷;利用2≤c≤3和c=-3a可對②進行判斷;利用二次函數(shù)的性質(zhì)可對③進行判斷;根據(jù)拋物線y=ax2+bx+c與直線y=n-1有兩個交點可對④進行判斷.【詳解】∵拋物線開口向下,∴a<0,而拋物線的對稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點坐標(1,n),∴x=1時,二次函數(shù)值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點坐標(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,∴關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根,所以④正確.故選D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次項系數(shù)a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數(shù)項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數(shù)由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.7、C【解析】試題分析:由題意可得根的判別式,即可得到關(guān)于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關(guān)鍵是熟練掌握一元二次方程,當時,方程有兩個不相等實數(shù)根;當時,方程的兩個相等的實數(shù)根;當時,方程沒有實數(shù)根.8、D【解析】試題分析:2013年的產(chǎn)量=2011年的產(chǎn)量×(1+年平均增長率)2,把相關(guān)數(shù)值代入即可.解:2012年的產(chǎn)量為100(1+x),2013年的產(chǎn)量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點評:考查列一元二次方程;得到2013年產(chǎn)量的等量關(guān)系是解決本題的關(guān)鍵.9、B【解析】
分別根據(jù)同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則對各選項進行逐一分析即可.【詳解】A.a3+a4≠a7,不是同類項,不能合并,本選項錯誤;B.a4÷a3=a4-3=a;,本選項正確;C.a3?a2=a5;,本選項錯誤;D.(a3)3=a9,本選項錯誤.故選B【點睛】本題考查的是同底數(shù)冪的乘法及除法法則、冪的乘方與積的乘方法則及合并同類項的法則等知識,比較簡單.10、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于5570000有7位,所以可以確定n=7﹣1=1.【詳解】5570000=5.57×101所以B正確11、B【解析】
先根據(jù)翻折變換的性質(zhì)得到△DEF≌△AEF,再根據(jù)等腰三角形的性質(zhì)及三角形外角的性質(zhì)可得到∠BED=CDF,設(shè)CD=1,CF=x,則CA=CB=2,再根據(jù)勾股定理即可求解.【詳解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,設(shè)CD=1,CF=x,則CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,∴sin∠BED=sin∠CDF=.故選B.【點睛】本題考查的是圖形翻折變換的性質(zhì)、等腰直角三角形的性質(zhì)、勾股定理、三角形外角的性質(zhì),涉及面較廣,但難易適中.12、B【解析】
根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F,可知四邊形為平行四邊形及四邊形為矩形,在中,解直角三角形可知BH長,易得GK長,在Rt△BGK中,可得BG長,表示出△BD'E'的周長等量代換可得其值.【詳解】解:如圖,作BK∥CF,使得BK=DE=2,作K關(guān)于直線CF的對稱點G交CF于點M,連接BG交CF于D',則,此時△BD'E'的周長最小,作交CF于點F.由作圖知,四邊形為平行四邊形,由對稱可知,即四邊形為矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周長的最小值為BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案為:2+2.【點睛】本題考查了最短距離問題,涉及了軸對稱、矩形及平行四邊形的性質(zhì)、解直角三角形、勾股定理,難度系數(shù)較大,利用兩點之間線段最短及軸對稱添加輔助線是解題的關(guān)鍵.14、1.【解析】
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.15、【解析】
根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x?1≠2,解得答案.【詳解】根據(jù)題意得x?1≠2,解得:x≠1;故答案為:x≠1.【點睛】本題主要考查自變量得取值范圍的知識點,當函數(shù)表達式是分式時,考慮分式的分母不能為2.16、;答案見解析.【解析】
(1)AB==.故答案為.(2)如圖AC與網(wǎng)格相交,得到點D、E,取格點F,連接FB并且延長,與網(wǎng)格相交,得到M,N,G.連接DN,EM,DG,DN與EM相交于點P,點P即為所求.理由:平行四邊形ABME的面積:平行四邊形CDNB的面積:平行四邊形DEMG的面積=1:2:1,△PAB的面積=平行四邊形ABME的面積,△PBC的面積=平行四邊形CDNB的面積,△PAC的面積=△PNG的面積=△DGN的面積=平行四邊形DEMG的面積,∴S△PAB:S△PBC:S△PCA=1:2:1.17、y3<y1<y1【解析】
根據(jù)反比例函數(shù)的性質(zhì)k<0時,在每個象限,y隨x的增大而增大,進行比較即可.【詳解】解:k=-1<0,∴在每個象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1【點睛】本題考查的是反比例函數(shù)的性質(zhì),理解性質(zhì):當k>0時,在每個象限,y隨x的增大而減小,k<0時,在每個象限,y隨x的增大而增大是解題的關(guān)鍵.18、14【解析】
根據(jù)菱形的性質(zhì),先求另一條對角線的長度,再運用菱形的面積等于對角線乘積的一半求解.【詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【點睛】此題考查了菱形的性質(zhì)及面積求法,難度不大.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、答案見解析【解析】
根據(jù)軸對稱的性質(zhì)作出線段AC的垂直平分線即可得.【詳解】如圖所示,直線EF即為所求.【點睛】本題主要考查作圖-軸對稱變換,解題的關(guān)鍵是掌握軸對稱變換的性質(zhì)和線段中垂線的尺規(guī)作圖.20、51.96米.【解析】
先根據(jù)三角形外角的性質(zhì)得出∠ACB=30°,進而得出AB=BC=1,在Rt△BDC中,,即可求出CD的長.【詳解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,∴(米).答:文峰塔的高度CD約為51.96米.【點睛】本題考查解直角三角形的應用,解題的關(guān)鍵是明確題意,利用銳角三角函數(shù)進行解答.21、這個圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據(jù)勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,設(shè)半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.22、(1)30°;(2)20°;【解析】
(1)利用圓切線的性質(zhì)求解;(2)連接OQ,利用圓的切線性質(zhì)及角之間的關(guān)系求解?!驹斀狻浚?)如圖①中,連接OQ.∵EQ是切線,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如圖②中,連接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切線,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【點睛】此題主要考查圓的切線的性質(zhì)及圓中集合問題的綜合運等.23、見解析.【解析】
先證明△AFC為等腰三角形,根據(jù)等腰三角形三線合一證明H為FC的中點,又D為BC的中點,根據(jù)中位線的性質(zhì)即可證明.【詳解】∵AE為△ABC的角平分線,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD為△ABC的中線,∴DH是△BCF的中位線,∴DH=BF.【點睛】本題考查三角形中位線定理,等腰三角形的判定與性質(zhì).解決本題的關(guān)鍵是證明H點為FC的中點,然后利用中位線的性質(zhì)解決問題.本題中要證明DH=BF,一般三角形中出現(xiàn)這種2倍或關(guān)系時,常用中位線的性質(zhì)解決.24、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標,進而求得D的坐標,即可求得DH的長度,令y=0,求得A,B的坐標,然后證得△ACO∽△EAH,根據(jù)對應邊成比例求得EH的長,進繼而求得DE的長;(2)找點C關(guān)于DE的對稱點N(4,),找點C關(guān)于AE的對稱點G(-2,-),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點的坐標求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點M作y軸的平行線交FH于點Q,設(shè)點M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點C關(guān)于DE的對稱點N(4,),找點C關(guān)于AE的對稱點G(﹣2,﹣),連接GN,交AE于點F,交DE于點P,即G、F、P、N四點共線時,△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點M作y軸的平行線交FH于點Q,設(shè)點M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對稱軸為:直線m=<2,開口向下,∴m=時,△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,1)當KF′=KF″時,如圖3,點K在F′F″的垂直平分線上,所以K與B重合,坐標為(3,0),∴OK=3;2)當F′F″=F′K時,如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當F″F′=F″K時,如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關(guān)鍵.25、,6﹣3.【解析】原式==,當a=,b=2時,原式.26、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據(jù)相似三角形的性質(zhì)可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據(jù)等邊三角形的性質(zhì)可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沖模課程設(shè)計書例
- 剪影摳圖課程設(shè)計
- 電風扇調(diào)速課程設(shè)計
- PVC抗沖改性型相關(guān)行業(yè)投資方案
- 大學生客服實習周記(10周)
- 程控放大器 課程設(shè)計
- 旅游課程設(shè)計作業(yè)
- 機械課程設(shè)計宋慧君
- 電力課程設(shè)計效果圖
- 洋參沖劑項目評價分析報告
- 2024年應急管理部所屬事業(yè)單位第二次招聘考試筆試高頻500題難、易錯點模擬試題附帶答案詳解
- 北師大版(2019)必修第三冊Unit 8 Green living Lesson 3“White Bikes”on the Road 教學設(shè)計
- 初中+語文++第11課《古代詩歌三首》(課件)+六年級語文上冊(統(tǒng)編版五四制)
- 財務英文詞匯大全
- 《幼兒園保教質(zhì)量評估指南》解讀
- Unit 2 單元教案 2024-2025學年人教版(2024)七年級英語上冊
- 小學英語語法專題訓練:名詞所有格(含答案)
- 2024至2030年中國食材配送行業(yè)經(jīng)營形勢及投資價值評估報告
- 廣東省佛山市六校聯(lián)考2025屆高三一診考試生物試卷含解析
- 大學生社會實踐-流動的急救課堂智慧樹知到期末考試答案章節(jié)答案2024年溫州醫(yī)科大學
- 中職語文基礎(chǔ)模塊上冊-第一次月考卷(1)【知識范圍:1-2單元】解析版
評論
0/150
提交評論