2023-2024學(xué)年山東省濰坊市高密市高三下學(xué)期第一次模擬(網(wǎng)考)考試數(shù)學(xué)試題_第1頁
2023-2024學(xué)年山東省濰坊市高密市高三下學(xué)期第一次模擬(網(wǎng)考)考試數(shù)學(xué)試題_第2頁
2023-2024學(xué)年山東省濰坊市高密市高三下學(xué)期第一次模擬(網(wǎng)考)考試數(shù)學(xué)試題_第3頁
2023-2024學(xué)年山東省濰坊市高密市高三下學(xué)期第一次模擬(網(wǎng)考)考試數(shù)學(xué)試題_第4頁
2023-2024學(xué)年山東省濰坊市高密市高三下學(xué)期第一次模擬(網(wǎng)考)考試數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年山東省濰坊市高密市高三下學(xué)期第一次模擬(網(wǎng)考)考試數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直角坐標(biāo)平面上,點(diǎn)的坐標(biāo)滿足方程,點(diǎn)的坐標(biāo)滿足方程則的取值范圍是()A. B. C. D.2.圓錐底面半徑為,高為,是一條母線,點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線的距離的最大值是()A. B. C. D.3.已知雙曲線()的漸近線方程為,則()A. B. C. D.4.某個(gè)小區(qū)住戶共200戶,為調(diào)查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進(jìn)行調(diào)查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內(nèi)用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1405.已知角的終邊與單位圓交于點(diǎn),則等于()A. B. C. D.6.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實(shí)數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)7.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎(jiǎng),現(xiàn)甲從盒中隨機(jī)取出2張,則至少有一張有獎(jiǎng)的概率為()A. B. C. D.8.設(shè)集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,則集合中的元素共有()A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)9.已知正方體的棱長(zhǎng)為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.10.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實(shí)數(shù)()A. B. C. D.11.給出下列四個(gè)命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個(gè)數(shù)是()A. B. C. D.12.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域是___________.14.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號(hào)是_____.15.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為__________.16.高三(1)班共有56人,學(xué)號(hào)依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為4的樣本,已知學(xué)號(hào)為6,34,48的同學(xué)在樣本中,那么還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點(diǎn),求的求值范圍.18.(12分)已知;.(1)若為真命題,求實(shí)數(shù)的取值范圍;(2)若為真命題且為假命題,求實(shí)數(shù)的取值范圍.19.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.(12分)某工廠,兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元.若從兩條生產(chǎn)線上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級(jí)分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取件進(jìn)行檢測(cè),結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤(rùn)為,求的分布列并估算該廠產(chǎn)量件時(shí)利潤(rùn)的期望值.21.(12分)已知,分別是橢圓:的左,右焦點(diǎn),點(diǎn)在橢圓上,且拋物線的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn).(1)求,的值:(2)過點(diǎn)作不與軸重合的直線,設(shè)與圓相交于A,B兩點(diǎn),且與橢圓相交于C,D兩點(diǎn),當(dāng)時(shí),求△的面積.22.(10分)已知橢圓,過的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過軸上的定點(diǎn).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

由點(diǎn)的坐標(biāo)滿足方程,可得在圓上,由坐標(biāo)滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【詳解】點(diǎn)的坐標(biāo)滿足方程,在圓上,在坐標(biāo)滿足方程,在圓上,則作出兩圓的圖象如圖,設(shè)兩圓內(nèi)公切線為與,由圖可知,設(shè)兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.【點(diǎn)睛】本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形結(jié)合思想的應(yīng)用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對(duì)應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,尤其在解決選擇題、填空題時(shí)發(fā)揮著奇特功效,大大提高了解題能力與速度.運(yùn)用這種方法的關(guān)鍵是運(yùn)用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡(jiǎn),并迎刃而解.2.C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.3.A【解析】

根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4.C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內(nèi)用水量超過15立方米的住戶戶數(shù)為,故選C5.B【解析】

先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點(diǎn),,故選:B【點(diǎn)睛】考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.6.C【解析】

求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡(jiǎn)圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點(diǎn)睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而研究函數(shù)的最值,屬于常考題型.7.C【解析】

先計(jì)算出總的基本事件的個(gè)數(shù),再計(jì)算出兩張都沒獲獎(jiǎng)的個(gè)數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎(jiǎng)的概率,由對(duì)立事件的概率關(guān)系,即可求解.【詳解】從5張“刮刮卡”中隨機(jī)取出2張,共有種情況,2張均沒有獎(jiǎng)的情況有(種),故所求概率為.故選:C.【點(diǎn)睛】本題考查古典概型的概率、對(duì)立事件的概率關(guān)系,意在考查數(shù)學(xué)建模、數(shù)學(xué)計(jì)算能力,屬于基礎(chǔ)題.8.A【解析】試題分析:,,所以,即集合中共有3個(gè)元素,故選A.考點(diǎn):集合的運(yùn)算.9.A【解析】

根據(jù)球的特點(diǎn)可知截面是一個(gè)圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長(zhǎng)的一半,所以球的半徑為,又因?yàn)?,所以,又因?yàn)?,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個(gè)平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計(jì)算.10.B【解析】

求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點(diǎn)睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點(diǎn)可計(jì)算參數(shù)值.11.B【解析】

①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個(gè)是假命題,故①錯(cuò)誤;當(dāng)內(nèi)角為時(shí),不是象限角,故②錯(cuò)誤;由特稱命題的否定是全稱命題知③正確;因?yàn)?,所以,所以“”是“”的必要條件,故④正確.故選:B.【點(diǎn)睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識(shí),是一道基礎(chǔ)題.12.A【解析】

對(duì)復(fù)數(shù)進(jìn)行乘法運(yùn)算,并計(jì)算得到,從而得到虛部為2.【詳解】因?yàn)?,所以z的虛部為2.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算及虛部的概念,計(jì)算過程要注意.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由于偶次根式中被開方數(shù)非負(fù),對(duì)數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點(diǎn)睛】此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.14.①②③【解析】

由已知分別結(jié)合和差角的正切及正弦余弦公式進(jìn)行化簡(jiǎn)即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點(diǎn)睛】本題主要考查了兩角和與差的三角公式在三角化簡(jiǎn)求值中的應(yīng)用,屬于中檔試題.15.【解析】試題分析:根據(jù)題意,記白球?yàn)锳,紅球?yàn)锽,黃球?yàn)?,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點(diǎn):古典概型概率16.20【解析】

根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號(hào)為第一組,15至28號(hào)為第二組,29號(hào)至42號(hào)為第三組,43號(hào)至56號(hào)為第四組.而學(xué)號(hào)6,34,48分別是第一、三、四組的學(xué)號(hào),所以還有一個(gè)同學(xué)應(yīng)該是15+6-1=20號(hào),故答案為20.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)或;(2).【解析】

(1)通過討論的范圍,將絕對(duì)值符號(hào)去掉,轉(zhuǎn)化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數(shù)零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)問題解決,數(shù)形結(jié)合得到結(jié)果.【詳解】(1)有題不等式可化為,當(dāng)時(shí),原不等式可化為,解得;當(dāng)時(shí),原不等式可化為,解得,不滿足,舍去;當(dāng)時(shí),原不等式可化為,解得,所以不等式的解集為.(2)因?yàn)?,所以若函?shù)存在零點(diǎn)則可轉(zhuǎn)化為函數(shù)與的圖像存在交點(diǎn),函數(shù)在上單調(diào)增,在上單調(diào)遞減,且.數(shù)形結(jié)合可知.【點(diǎn)睛】該題考查的是有關(guān)不等式的問題,涉及到的知識(shí)點(diǎn)有分類討論求絕對(duì)值不等式的解集,將零點(diǎn)問題轉(zhuǎn)化為曲線交點(diǎn)的問題來解決,數(shù)形結(jié)合思想的應(yīng)用,屬于簡(jiǎn)單題目.18.(1)(2)或【解析】

(1)根據(jù)為真命題列出不等式,進(jìn)而求得實(shí)數(shù)的取值范圍;(2)應(yīng)用復(fù)合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當(dāng)為真命題時(shí),實(shí)數(shù)的取值范圍是.(2)由,可得,又∵當(dāng)時(shí),,.∵當(dāng)為真命題,且為假命題時(shí),∴與的真假性相同,當(dāng)假假時(shí),有,解得;當(dāng)真真時(shí),有,解得;故當(dāng)為真命題且為假命題時(shí),可得或.【點(diǎn)睛】本題主要考查結(jié)合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復(fù)合命題的真假判斷,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.19.(1);(2).【解析】

(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項(xiàng)公式為an=n+1.(2)設(shè)的前n項(xiàng)和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點(diǎn)晴】本題主要考查了等差數(shù)列的通項(xiàng)公式、“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式、一元二次方程的解法等知識(shí)點(diǎn)的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項(xiàng)公式,進(jìn)而利用錯(cuò)位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運(yùn)算能力,屬于中檔試題.20.(1)(2)①生產(chǎn)線上挽回的損失較多.②見解析【解析】

(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項(xiàng)分布的期望公式和數(shù)學(xué)期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后由分布列可得利潤(rùn)的期望值.【詳解】(1)設(shè)從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設(shè)從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨(dú)立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合格率分別為和,即不合格率分別為和.①設(shè)從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線上挽回?fù)p失的平均數(shù)分別為:,所以生產(chǎn)線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計(jì)總體,則有,,所以的分布列為所以(元)故估算估算該廠產(chǎn)量件時(shí)利潤(rùn)的期望值為(元)【點(diǎn)睛】本題主要考查概率公式的應(yīng)用,二項(xiàng)分布的性質(zhì)與方差的求解,離散型隨機(jī)變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論